CheckSync: Transparent Primary-Backup Replication for
Go Applications Using Checkpoints
by
Nicolaas M. Kaashoek

B.S. Computer Science and Engineering
Massachusetts Institute of Technology, 2020

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

AUthOr .. e
Department of Electrical Engineering and Computer Science

May 20, 2021

Certified by ..o
Robert Tappan Morris
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted Dy . ...

Katrina LaCurts
Chair, Master of Engineering Thesis Committee






CheckSync: Transparent Primary-Backup Replication for Go
Applications Using Checkpoints
by
Nicolaas M. Kaashoek

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Many distributed systems have singular, mission-critical components. The MapReduce
coordinator, lock servers, etc are all examples of such components. Due to their importance,
they require high availability and fault tolerance. The most common way to achieve this
is through the use of replicated state machines, an approach in which the application is
replicated across multiple machines. There could be as few as two in a primary/backup
arrangement, or more to reduce the risk of downtime. Each instance starts in the same
state, and then advances to new states in the same order. This allows for easy failover to
one of the replicas in case the primary machine fails.

The use of replicated state machines, however, requires an application to expose the
correct stream of operations to ensure that each machine ends up in the same final state.
This abstraction is not well-suited to all applications, as it can’t support multithreading
and can add extra complexity for application developers. This thesis proposes CheckSync,
a protocol for achieving high availability and fault tolerance via the use of checkpoints.
CheckSync is designed with transparency as a primary goal: applications require little to
no modification to use it. It achieves this by checkpointing the memory of an application
and replicating that state from primary and a backup. Upon failure, the backup resumes
from the checkpoint and continues running.

CheckSync’s transparency sets it apart. Unlike the operation stream required for repli-
cated state machines, CheckSync doesn’t place constraints on the design of the applica-
tion. It can suspend and capture the memory of Go applications without knowledge of the
specifics of the application, as well as restore them on the backup. This is accomplished
through careful analysis and recreation of the application’s memory space, as well as effi-
cient transmission of the checkpoint files to minimize performance overhead. CheckSync
is evaluated with three different applications, and supports all three without any changes to
their code.

Thesis Supervisor: Robert Tappan Morris
Title: Professor of Electrical Engineering and Computer Science



Acknowledgments

Robert Morris for his invaluable advice, gentle guidance, and precise feedback in all as-
pects of research.

Burton 4, who made every day at MIT just a little brighter.
Katharina and Yaateh, for their company during a difficult year in quarantine.
Katrina LaCurts for her joy and kindness throughout my time at MIT.

My family for their patience, love, and endless support.



Contents

Contents

[List of Figures|

[List of Tables
L Introduction|

(1.1 Making Applications Fault Tolerant 1s Intrusivel . . . . . . ... ... ...

(1.2 CheckSync: Transparent Fault Tolerance|. . . . . . . ... ... ... ...

[3.3  Checkpoint/Restore| . .
[3.3.1 Checkpointing|
[3.3.2  Suspension| . .

[3.4  Consistency| . . . . ..
[3.5 Application Support|. .

4 Implementation|

S Evaluation|
[5.1 Experiment Setup| . . .

[5.2  Applications Evaluated and Transparency| . . . . . . ... ... ... ...

11
11
12
13

15
15
16
17
18

19
19
20
21
22
23
24
24
26
29
30

33



[5.2.3  Matrix Exponentiation| . . . . . ... ..o oL
.24 UsmgRaftt ... ... ... ... ... .. ... . ...,
.3 Checkpoimnting]. . . . . ... ... .
[5.3.1 Checkpoint Performance| . . . . . .. ... ... .. ... .....
[5.4 Strong Consistency| . . . . . . . . . . ..

3.6 Summaryof Results|. . . . .. ... ... ... ... ... . ... ..

6 Extensions and Future Workl
[6.1 Decreasing Checkpoint S1ze| . . . . . . .. .. ... ... .. ... .. ..
[6.2 Incremental Checkpointing| . . . . . . ... .. ... ... .. ...,

47
47
47
47
48

49

51



List of Figures

[2-1 Operation replicationmnRaftf . . . . ... ... ... ... .. ...... 16
[2-2 How multithreading causes failluresm Raft. . . . . . .. ... .. .. ... 17
[2-3 Virtual machine live migration| . . . . . . .. .. ... ... 0000 18
[3-1 CheckSync design overview| . . . ... ... ... ... .......... 20
[3-2° How CheckSync recovers from fatlure|. . . . . .. ... ... ... . ... 21
[3-3 The checkpointoperation| . . . . . ... .. ... ... .. ......... 23
B-4 Goroutinesl. . . . . . . . ... 25
[3-5 Checkpointimages| . . . .. ... ... .. ... .. ... ... ..., 26
Bo6 RESIOE . .« o v oo e e e e 27
[3-7  Restorer memory layout| . . . . . ... ..o oo 28
[3-8  CheckSync consistency model| . . . . . .. ... ... ... ... ... 29
[5-1 The main coordinator function in CheckSync| . . . . . .. ... ... ... 38
[5-2 The handle completed functionm Rafy . . . . . .. ... ... ... .... 39
[5-3  Requests over time with CheckSync| . . . . . . ... ... ... ... ... 42
[5-4  Impact of failover on application throughput/ . . . . . . . . ... ... ... 45







List of Tables

[3.1 Supported Application Features| . . . . .. .. ... ... ......... 30
.1 Lines of code for CheckSync’s components| . . . . . ... .. ... .... 33
[5.1 Lines of code changed for different applications| . . . . . . ... ... ... 36
[5.2  The size on disk for different numbers of keys| . . . . . .. ... ... ... 40
[5.3  'Time spent 1n different phases of the checkpoint process| . . . . . ... .. 41
[5.4 Comparing Redis’ Save Overhead with CheckSync Checkpointing| . . . . . 43
[5.5  Checkpoint Size and Time Spent Encoding for Strong Consistency| . . . . . 44
[5.6  Time Spent in Diiferent Phases of the Restore Process (in Milliseconds)| . . 44
[5.7 Time Spent in Different Phases of the Restore Process on Remote Deploy- |
I - v 46



10



Chapter 1

Introduction

Distributed systems often have numerous smaller components, each responsible for a spe-
cific part of the system’s operation. One or more of these components may be critical to the
system’s operability; if it were to go offline, the entire system would come down. There-
fore, it is important that these critical components be able to tolerate and recover from
failures, and to do so quickly. They must be fault tolerant and highly available.

This thesis explains the motivation behind CheckSync, a system designed to deliver
fault tolerance and availability by capturing application memory, explains its design and
key features, and discusses how CheckSync was implemented.

This thesis also presents an evaluation of CheckSync on three different applications:
the aforementioned MapReduce coordinator, an application with a long-running mathe-
matical computation, and an in-memory key/value store. These three use cases show that
CheckSync is not only operational, but presents a practical option for achieving fault toler-
ance.

1.1 Making Applications Fault Tolerant is Intrusive

While fault tolerance has been an essential aspect of distributed system design[21, 9] for
years, actually achieving it can be a challenge. Even in the simplest case where only two
machines are used, a great deal of care must be taken. In this case, one machine acts as
the primary and the other as the backup, and upon primary failure the system switches to
the backup. However, the application must start on the backup in a near-identical state as
when it failed on the primary for the process to work. Ensuring that this is the case requires
careful coordination and synchronization between both parties in the system.

Replicated state machines[30], a common solution for fault tolerance, create a set of
replicas and start them with the same initial state. From there, they replicate a stream of
operations across all the replicas, which apply them in the same order to ensure that they
end up at the same final state. Consensus protocols like Raft[26] and Paxos[20] are used
to agree on the order despite failures. An early version of VMWare’s approach to fault
tolerance for virtual machines[29]] and chain replication[34] are other examples that fit the
same general approach.

As many applications want fault tolerance, it is important that any scheme that provides

11



it be able to support a wide variety of applications. The operation-based replication used
in replicated state machines fails to deliver on this goal. Not all applications have a neat
abstraction that fits a replicated operation log. Consider, for instance, the coordinator in
MapReducel[l17]. The coordinator needs to be highly available, and needs to track the state
of the system, but doesn’t truly have operations it needs to respond to. The general issue
in identifying and exposing the right set of operations can make the design of applications
that use state machine replication a difficult process.

Additionally, using a replicated series of operations necessitates that the operations be
applied in the same order on all the replicas. If they aren’t then the final states will not be
identical. For this reason, replicated state machines cannot handle multithreaded execution.
In such cases, execution is no longer deterministic, making it impossible to predict the order
the operations will be applied in. The lack of support for multithreading further restricts
application developers, and in combination with the complexity introduced by replicating
operations makes that approach poorly-suited for delivering a transparent system for fault
tolerance.

1.2 CheckSync: Transparent Fault Tolerance

CheckSync is a memory-based replication scheme for providing high availability and fault
tolerance for mission-critical applications. By taking a checkpoint of the memory of an
application mid-execution, CheckSync avoids the problems that replicated state machines
have with general-purpose application support. Rather than relying on applications to ex-
pose the operations that modify the memory, CheckSync instead captures memory directly.
This also allows it to take checkpoints of multithreaded code.

There are two components to CheckSync. First, the checkpoint/restore library. This
handles both the checkpoint and restore operations. CheckSync has two different libraries.
One uses CRIUJ[3]], an existing userspace checkpoint/restore tool. The other consists of
a modified Go runtime and a Go library. The*“internal” checkpointing tool can make use
of information unavailable to an external tool like CRIU, which creates opportunities for
optimization and supports different levels of consistency. The internal library is currently
unable to support all the features of applications that CRIU can, so CheckSync is evaluated
using mostly the external checkpointing tool instead.

CheckSync’s second component is the manager, which handles the transmission of
checkpoints and monitors the state of the system. The manager is responsible for initi-
ating failover and triggering the restoration process.

CheckSync operates by first suspending all the threads of the application, which exe-
cutes only on the primary, and dumping the memory in use to disk in the form of image
files. The manager then makes these images available to the backup, either by direct copy
or by uploading them to a known location. When the manager on the backup detects a
failure on the primary, failover is initiated. The backup reads the image files, maps them
into memory correctly, and then resumes execution from exactly the point at which the
checkpoint was taken.

Performing the checkpoint operation is complex. Because CheckSync supports multi-
threaded applications, it must be able to suspend all the threads executing concurrently with

12



the checkpointing operation. If any of these threads modify memory while a checkpoint
is occuring, the state the backup will resume to may be inconsistent with what memory
looked like on the primary. CheckSync’s internal checkpointer deals with this by making
use of the runtime’s knowledge of all running threads and its ability to manipulate them.

The restoration process presents its own problems. Memory must be restored on the
backup by some process other than the application being replicated. However, execution
must return to the application once memory has been setup correctly. This is troublesome as
it means that the restoring code must map the application into its own memory space with-
out overlap, and then correctly restore the register set in such a way that execution seam-
lessly jumps to the application. CheckSync addresses this through careful management of
memory and the mapping of pre-compiled code to non-intersecting memory locations.

The manager also needs to be careful. It cannot suspend an application for too long lest
the performance overhead becomes too great to ignore. Additionally, while consensus pro-
tocols and some other operation-based replication approaches provide strong consistency,
this is difficult for CheckSync. It has no knowledge of the underlying application, so it is
always possible that a change happens between a checkpoint and a failure. That change
will not be reflected upon resumption on the backup. For this reason, CheckSync provides
timeline consistency. However, the internal checkpointer also provides applications with
the option to force strong consistency instead.

1.3 Thesis Goals and Contributions

In summary, this thesis presents an alternative to existing replicated state machine ap-
proaches for fault tolerance using checkpoint/restore. CheckSync is a primary-backup style
of fault tolerance that relies on the primary periodically checkpointing the running applica-
tion and sending it to the secondary, which can resume from the checkpoint in the case of
failure. CheckSync has been implemented and evaluate with two key goals:

* Transparency: CheckSync must support a variety of Go applications, which can be
multithreaded, without incurring significant development costs on the part of devel-
opers.

* Performance: CheckSync must be able to meet performance goals such that the
overhead of taking and sending checkpoints do not significantly impact the applica-
tions it is designed to work for.

The contributions of this thesis are:

* Multithreaded Checkpointing: The design and implementation of a Go library and
corresponding modification to the Go runtime to support checkpointing of Go appli-
cations.

* Checkpoint Replication and Restoration: The design and implementation of a
Go library to send checkpoints from a primary to a backup and restore from those
checkpoints in the case of primary failure.

13



* Evaluation on Sample Applications: The implementation and evaluation of three
applications using CheckSync, including comparisons with other techniques for achiev-
ing fault tolerance.

Although CheckSync achieves its main goals, the current implementation has some
shortcomings:

* Both the internal and external tools have problems. The internal tool doesn’t support
file or network 1/0, while the external tool has no option to deliver strong consistency.

* The size of the checkpoints produced by CheckSync can grow large as the state of
the application increases. This means CheckSync performs poorly for applications
with large state.

* CheckSync is a primary/backup system. It doesn’t offer the same level of availability
as Raft or other systems that use more than one replica.

In future work we hope to address these challenges by improving the internal checkpointer
to include features of the external one, and then use the internal tool’s runtime integration
to produce smaller checkpoints.

14



Chapter 2
Background and Related Work

Replicated state machines is one of the most common approaches to achieving fault toler-
ance. An application is replicated across multiple machines, which all start with the same
initial state. The application then transitions from the start state to successive states as its
execution progresses. Replicated state machine protocols ensure that each replica applies
the same transitions in the same order, ensuring that each replica ends up in the same final
State.

2.1 Consensus Protocols

One of the most common classes of replicated state machine protocols are consensus proto-
cols such as Raft and Paxos. They are often the go-to approach for achieving fault tolerance.
Both protocols accept operations from the application, and come to a consensus about the
order in which all the operations must be applied. In Raft this is done by having the repli-
cas vote for a leader, who then proposes and commits the operations. Once an operation is
committed it is durable.

An overview of this process in Raft is shown in Figure [2-1] Operations are added to a
shared log by the leader. The operations are then replicated to all the backups, which also
apply them. This makes the replicas’ state identical to the leader’s. This approach requires
that the application feed the operations to the underlying protocol, which can make using
consensus protocols difficult.

Not only do applications need to understand the protocol enough to know what needs
to be replicated, but they also have restrictions on their design. Because the leader and
its followers must apply every operation in the same order, supporting non-deterministic
execution is impossible. If a system like Raft or Paxos were to process requests in parallel,
there would be no way to guarantee that this invariant would hold.

An illustration demonstrating why multithreading is a problem for Raft in particular is
shown in Figure [2-2] Operations enter the protocol in parallel, and are applied in parallel.
This results in the order shown in step 3. However, when replica 2 reads the operations
from the log, it applies them in a different order due to them racing in parallel. This means
that the final state in step 7 is different than the state in step 3.

15



Application

v

Consensus
Protocol

State

Primary Log

Opl|Op2|Op3| eee

Backup Logs
OPI (\[’) (h[‘l P
0"] AT wE FaT™e P
Opl|Op2|Op3| eee

Figure 2-1: Replication in Raft. The application feeds updates to the consensus protocol,
which coordinates the replication of the operations to all the logs. The replicas then read
from the logs to construct the state, which the application can then use.

2.2 Operation and Memory-Based Replication

Another example of replicated state machine design was designed by VMWare with the
goal of supporting fault tolerant virtual machines[29]]. In that system, two machines are
started running the same VM. The hypervisor on one machine, the primary, intercepts all
input (network packets, keyboard input, etc.) to the VM, and records those operations in
a log. This log is then replayed on the second virtual machine to reconstruct the state of
the virtual machine. However, this had major performance drawbacks, and, like consensus
protocols, prohibited multithreading.

The performance problems and lack of multithreading led VMWare to design a new
class of systems for fault tolerance, which use live migration[13]] instead of replicated state
machines. Examples of systems that use this approach include Remus|[/16] and vMotion[7],
which provide high availability and fault tolerance for virtual machines running in a cloud
computing environment.

In Live Migration, while a VM is executing, the hypervisor captures a complete image
of the memory of that virtual machine, and sends it to a backup machine which can then
use that image to restore and resume execution of the virtual machine from the exact point
in time that the image was captured.

This approach is illustrated in Figure As all of memory is being replicated, live

16



Replica 1 Replica 2

0
wES @ O ©

Parallcl State Parallel State

Opl Opl
Consensus Op2 Op2 Consensus Op2 Opl

Protocol Protocol

rotoco Op3 Op3 rotoco Op3 Op2
Opl Op3

@ ¢ Log @ T Log

Opl|Op2|Op3| eee Opl|Op2|Op3| eee

Figure 2-2: How Multithreading causes Failures in Raft

migration allows vMotion and its competitors to capture and restore virtual machines that
have multiple threads. Also, because the virtual machine is captured rather than the appli-
cation, it is transparent to applications.

The difference between replicated state machines and virtual machine live migration
can be broadly categorized as operation-based replication and memory-based replication.
Replicated state machines rely on the replication of a stream of operations that modify state,
with each replica applying them in the same order to end up at the final state. Memory-
based replication, however, copies the actual state of the application in the form of memory,
rather than reconstructing it using operations.

CheckSync is an example of a memory-based replication scheme, and also operates
as a primary and a backup. However, it differs from VM migration in how lightweight it
is. While live migration does handle the problems with replicated state machines, it also
requires that an application be running in a VM. This can be wasteful, as the application
may be small, and live migration will capture the whole virtual machine no matter what.
CheckSync deals with this by capturing only the application’s state.

2.3 Multithreaded Fault Tolerance

Attempts have been made to address the lack of support for multithreading in replicated
state machines as well. Sometimes through modifications to existing protocols[38]], or
wholly new replication schemes[18]]. However, none of these approaches have seen widespread
adoption, and are not transparent.

Another class of attempts to allow replicated operation approaches to provide fault tol-
erance even in the face of concurrent execution is the use of deterministic execution[ 15,

17



Primary Backup
Guest OS Guest OS

App 1| |App 2| |App 3 App 1| |App 2| |App 3

L 1 L
v Hyp!rvisor v >r + Hypervisor
Host OS Host OS

Figure 2-3: Virtual machine live migration

25,18, [10]. These schemes create a consistent ordering of operations even if they happen in
parallel, which addresses the core problem replicated state machines have with multithread-
ing, but these schemes have considerable overhead for enforcing determinism. Again, such
techniques have not seen much adoption.

2.4 Checkpointing

CheckSync works by taking checkpoints of the memory of a running application. Check-
pointing has a long history in multiple areas of computer systems. One such area is in
databases, where checkpointing is used for a variety of purposes [23], mostly as a way to
improve recovery times when failure occurs. By checkpointing the operation log, less re-
play needs to be done and recovery times increase. In memory databases also make use of
checkpoints, using it as a way to snapshot the state of the database in case of failure[27].
These uses of checkpointing are in a similar vein as CheckSync, but are designed specifi-
cally for databases rather than general purpose code.

Operating systems have also made use of checkpoint and restart patterns to improve
recovery times in different contexts. One such example is improving update times[19].
Generally, these schemes are designed to allow applications on an operating system to
tolerate hardware failures[11,|12]. There has also been some use of checkpointing for real-
time operating systems to improve fault tolerance for such systems [28].

One of the more common environments where checkpoints are used to great effect
is in high-performance scientific computation. For long running compute jobs, periodic
checkpoints can be used to prevent the loss of large amounts of work in the face of a
crash[32,|35]. These checkpointing schemes can support parallel execution as well[22, 31]
Checkpoint support has even been built into the Charm++ runtime specifically to support
such applications[37, 36], however these approaches are specifically designed to reduce
the amount of work that needs to be redone after a failure. They are not concerned with
maintaining high application availability, which makes them poorly suited for the kind of
applications CheckSync seeks to support.

18



Chapter 3

Design

CheckSync tackles the problem of improving application availability by first checkpointing
the application, and then synchronizing the checkpoint with a backup which can then restore
from that checkpoint in the face of failure. CheckSync’s design is intentionally lightweight
and poses a small development load for the application programmer.

This chapter presents an overview of CheckSync’s design (§3.1)) and its components:
the manager (§3.2) and the checkpointer (§3.3). The manager is responsible for initiat-
ing the checkpointing process, sending the checkpoints and keeping track of the state of
the system. The checkpointer is responsible for taking and restoring from checkpoints.
CheckSync has two different modes, one delivers timeline consistency while the other pro-
vides strong consistency (§3.4).

With the driving motivation to stay lightweight and keep work simple for developers,
CheckSync cannot rely heavily on cooperation from application developers. However, we
do assume that application developers write correct, thread-safe code as CheckSync pro-
vides no extra correctness properties to the system. If the application code is incorrect or
inconsistent, CheckSync will not improve availability. Also, CheckSync places restrictions
on what applications can do. These restrictions are discussed in §3.5]

3.1 Overview

CheckSync is a primary-backup system designed to deliver high availability for applica-
tions. It supports a single application written in Golang[3], and replicates the state of this
application by periodically checkpointing its memory and sending that checkpoint to the
backup. CheckSync uses Go to take advantage of runtime integration to when checkpoint-
ing. The primary runs the application, while the backup holds copies of the most recent
checkpoints sent by the primary. The backup does not run the application unless a failover
occurs.

CheckSync is designed to be deployed in a cluster environment to provide fault toler-
ance for components of a larger system. One example component that CheckSync supports
is the MapReduce[l17] coordinator.

Figure 3-1] illustrates the workflow for CheckSync, which can be described as follows:

19



(1) Starts a primary manager and backup manager on the primary and backup respec-
tively

(2) The primary manager starts the application

(3) The primary manager checkpoints the application

(4) Failure occurs on the primary

(5) The backup manager detects failure after a lack of heartbeats

(6) The backup manager initiates the restore operation on the most recent checkpoint

(7) The application being replicated resumes execution

Heartbeats

‘ Restore

Figure 3-1: CheckSync design overview

3.2 Manager

The manager runs as a separate process independent of the application. There are two
modes for the manager that determine its operation: primary manager, and backup manager.
Both the primary and backup instances of the manager must be started before the system
can actually start working, as they work in conjunction to keep the system running.

The primary side of the manager has two roles. First, it does the work of checkpointing
the application process. The manager starts and periodically initiates the checkpointing of
the application that CheckSync is being used to replicate. It configures parameters includ-
ing the frequency of the checkpoints as well as the mechanism used to do the checkpointing,
as discussed further in §3.3]

The second role of the primary manager is to replicate the checkpoints produced from
the application to a location reachable by the backup. This is done by saving the checkpoint
to a storage system like S3 or Azure, which ensures that the files are always available to
the backup when the primary fails.

In addition to storing the checkpoints, the primary manager also sends periodic heart-
beat messages to the backup to ensure that the backup is aware that it is still alive. These
heartbeat messages and all other forms of communication between the two sides are simple
RPCs using the gRPC framework.

The backup manager does very little work unless a failover occurs, during which it must
take care of some configuration to get the system in proper order. This is discussed further
in §3.2.1] Outside of failover situations, the backup monitors the status of the primary

20



via heartbeats messages. It also replies by informing the primary about the most recent
checkpoint it received.

In a cluster deployment, the decision about which machine is the primary and which is
the backup would be handled by a some external configuration agent, likely backed by a
consensus protocol, to ensure that network splits don’t create two primary machines.

3.2.1 Failover

Clients
Primary Heartbeats Backup Elastic IP
PP G S << | \
EEETTEYEET SER P TR PP e 3 €
= <€
A
Clients
Offline Primary Elastic IP
<€ | \
<€
<€
Clients

New Backup Primary Elastic IP
oosoe- <
-ovooe- < €

<%

Figure 3-2: How CheckSync recovers from failure. Failure is detected due to a lack of
heartbeats, the elastic IP is reassigned to the backup, which then becomes the new primary
for clients to talk to.

Under normal operation, the application runs entirely on the primary, leaving the backup
idle. When a failure occurs that causes the primary machine to go offline, the backup has
to pick up from where the primary left off. The entire failover process is illustrated in[3-2]

First, it must detect that the primary is offline. This happens when the backup notices
that it has missed five heartbeat messages, although this number can be configured for more
rapid response to failure.

Then, the backup manager initiates the restoration process as described in Once
the restored application is up and running, the backup manager needs to make sure that any
potential clients or other entities on the network communicating with the application can
do so. To do this, it needs to update the cluster configuration information so that incoming
traffic can reach the new primary.

The exact mechanism used to this varies depending on the cloud provider used to run
CheckSync. In its test deployment, this was done by modifying an elastic IP address point-
ing at the application when a failover occurs. For the backup all this meant was running

21



a pre-configured AWS lambda function to modify the line in the cluster configuration that
controls the destination of the elastic IP address.

The failover process also has consquences for clients communicating with the applica-
tion. During the failover, the application will be offline. For this reason, it is important that
the clients be constructed to attempt to reconnect to the application if their connections fail.
Additionally, because CheckSync isn’t strongly consistent (§3.4), the application must be
able to handle duplicate client requests.

3.3 Checkpoint/Restore

CheckSync has two different approaches to checkpointing and restoration. The first, termed
the “external” checkpointer uses a separate process that runs CRIU[3] to take the check-
points and to restore from them. The second, the “internal” checkpointer lives inside a
Go library and the runtime and uses runtime mechanisms alongside other tools to take
the checkpoints. The restoration process for the internal checkpointer is a lighter-weight
version of CRIU’s restoration phase.

CRIU is an existing tool used to take and restore from checkpoints entirely in userspace.
CRIU is not designed to provide high availability, and is instead often used to checkpoint
containers such as Docker to improve startup/bootstrap times for creating new contain-
ers. However, as CRIU supports a number of features (see §3.5) that the internal method
currently doesn’t, it is an ideal tool for demonstrating the viability of checkpointing for
achieving fault tolerance and availability.

Both the internal and external approaches have their own advantages. Using CRIU
enables checkpointing of a wider variety of applications. Unlike CheckSync, CRIU is not
specific to Go. Additionally, CRIU has the ability to take checkpoints even if an application
is making a system call, in the midst of writing to a socket, and has open file descriptors.
The internal checkpointer could be modified to support these features as well, but as cur-
rently implemented it cannot do so.

However, the internal checkpointer has its own advantages. First, because it lives in the
runtime, it has access to more information about the application than CRIU does. While
the current implementation doesn’t take advantage of this, some simple extensions include
checkpointing only the heap, stack, and data segments rather than the entire application.
This would reduce both checkpoint size and overhead. Further extensions could take this
to more extremes as well, such as tracking memory changes to dump out only the actual
bytes that have changed.

Another advantage of the internal checkpointer is that with cooperation from the appli-
cation it can deliver strong consistency (see §3.4).

As CRIU is extensively documented, the remainder of this section describes only the
internal checkpointer.

The internal checkpointer is inspired by CRIU and is implemented as a small set of
changes to the Go runtime, with the majority of the code living in a separate library. The
internal CheckSync checkpointer operates entirely within the same process as the applica-
tion.

22



3.3.1 Checkpointing

At a high level, the checkpoint process is divided into two phases, illustrated in Figure |3-3

1 - Suspension. During this phase, CheckSync takes care to suspend the running appli-
cation in a safe state so that it can be checkpointed without risk of memory being
modified in the middle of the checkpoint.

2 - Dump. Here CheckSync captures the state of the application and outputs it as a
collection of files.

App Process
Checkpoint 4
Stop the4~ (1) Start Suspend
World Fork
Dumper
———————>| Dumper (2) Start Capture
Stop Signal
Capture Mem Application '
> —> | mem.1umg
Memory
Vmal: Start=X1,End=Y1
> | Vma2: Start=X2.End=Y2
GetRegs rip = XX
- (3) Resume 2 » | rax = XX |——| core.img
rsp = XX

Figure 3-3: The checkpoint operation

23



3.3.2 Suspension

In order to safely take a checkpoint, CheckSync must ensure that none of the application’s
state will change in the midst of the checkpointing operation. Much like a garbage collector,
this requires that CheckSync be able to stop the world, pausing the execution of all running
threads.

To understand how the suspension step works, it is important to discuss goroutines
and how the go runtime interacts with them. Goroutines are Go’s implementation of user-
level threads, and run on kernel threads. However, no goroutine is tied to a single thread.
Instead, the Go runtime has an internal scheduler that decides which goroutine to run on
which kernel thread.

In order to facilitate garbage collection, the Go scheduler can interrupt a goroutine
to stop it’s execution. The points at which this can occur are called preemption points,
and CheckSync makes use of them to assist in the suspension of the application as well.
There are two kinds of preemption points, synchronous ones inserted by the compiler, and
asynchronous points computed by the runtime as the thread is executing.

Synchronous preemption points are inserted by the compiler and are locations in the
goroutine’s execution where it pauses to check if the scheduler has issued a request for pre-
emmption. When discussing goroutines, the scheduler is not the OS scheduler, but rather
the scheduler inside the runtime. The runtime scheduler will issue requests for preemption
whenever the garbage collector needs to run, and CheckSync uses an identical mechanism
to issue a request for preemption as well.

Synchronous preemption points don’t cover all cases where a goroutine may need to be
suspended, however, as there is no guarantee a goroutine ever reaches a preemption point.
For this reason, the scheduler can issue a signal to a goroutine that forces it to suspend.
Then, the scheduler checks if the goroutine is safe for the garbage collector to run. If it is,
the thread stays suspended, and if not the scheduler lets it run for a bit before trying again.

An illustration of goroutines and preemption points is shown in fig. [3-4] Note that the
red squares have been added for clarity’s sake to represent preemption points.

3.3.3 Dump

Once all the other goroutines running in the application are suspended, the only one run-
ning is the one taking the checkpoint. Therefore, it is safe for CheckSync to capture the
memory of the application, as it knows nothing will modify it any further. After dumping
the memory, CheckSync dumps the contents of the registers at the time of the checkpoint.

Capturing the memory of the application is done using Linux’s proc pseudo filesystem.
Proc exposes all the information about a process’ allocated virtual memory areas (VMAs),
which CheckSync reads once the application has been suspended. This information is
parsed from proc and stored as a table in memory. This table is then written out to the
“core image file”, which will eventually contain the register values as well.

CheckSync uses ptrace to capture the contents of the registers. As a process cannot
trace itself, CheckSync forks a child process to facilitate both the dumping of memory as
well as the registers. While CheckSync could invoke assembly code directly to do this,
ptrace is more portable and adds less opportunity for bugs in CheckSync

24



. = Safe Preemption Points
1 4 7 9 12
@)1= = w i i [
5 8 11
@)(= = e = i ] i = i
3 6 10
|
(@) [E=En = = 0 I = = [ = w i mnn

2
O D OO LI COIL X

Figure 3-4: Goroutines and Preemption Points. The Go runtime can preempt any of the
goroutines at a safe point, choosing another one to run.

The child process, termed the dumper, uses the proc filesystem to dump the contents
of its parent’s memory areas to disk as one single file. This is the “memory image file”,
which contains all virtual memory areas that are readable. VM As that aren’t readable, such
as copy-on-write mappings and the pages used for virtual system calls aren’t dumped, but
their information is stored in the core image file to facilitate proper restoration. Finally, the
dumper uses ptrace to capture and dump the values stored in its parent’s registers to the
core image file as well.

An illustration of the contents of both image files is shown in Figure[3-5] The memory
image file (mem.img) contains the actual data from the application’s memory (obtained
during the dump step), and the core image file (core.img) contains all the data needed to
reconstruct the memory space on the backup. Also included in the core file are the contents
of the registers at the time the checkpoint was taken.

The parent of the dumper simply waits for the dumper to finish execution, at which
point it starts the world again and allows the application to resume execution.

25



Core Image File Memory Image File

Registers

rax=0x1234

rsp=0x1234

VMA 1: Start=0xX,End=0xX VMA 2

Perms=RWXP
Written=YES
VMA 2: Start=0xX,End=0xX | [~~~ ~~"~"TTTTTTTTTTTTTTTTTTTTTTT
Perms=R-XP VMA 4

Written=YES

VMA 3: Start=0xX,End=0xX
Perms=—P

Written=NO, COW

VMA 4: Start=0xX,End=0xX
Perms=R-P

Written=YES

VMA 5: Start=0xX,End=0xX
Perms=RW-P

Written=YES

VMA 5

VDSO: Start=0xX,End=0xX
VVAR: Start=0xX,End=0xX
VSYSCALL: Start=0xX,End=0xX

Figure 3-5: Checkpoint Image Structure. mem.img contains the raw bytes from each of the
application’s VMA’s, and core.img contains all the extra information needed to map those
areas to the correct location on the backup, as well as register contents.

3.3.4 Restore

There are a few things that must be restored for the application to work correctly. First,
the memory of the application process must contain all the mappings that were present on
the primary. Also, all the threads present on the primary must be recreated on the backup.
Finally, the registers for all the threads have to be correctly restored as well.

Currently the internal checkpointer does not handle multithreaded code. However, ex-
tending it to do so may not be complicated as the Go runtime decouples goroutines from the
underlying kernel threads that support them. The scheduler picks from available goroutines
and maps them to available threads whenever it runs. CheckSync might be able to use this

26



Loader

Read from
. Vmal: Start=X1,End=Y1
core.img

Find location for Restorer €———=—| Vvma2: Start=X2,End=Y2

Map Restorer

Fork Restorer

Restorer

Wait for Restorer

. mmap
mem.img [——
Signal done

" | Read from | rip = XX

core.img | rax = XX

rsp = XX

ait for Loader

Set Registers

Morph Complete
I

Application

Figure 3-6: How CheckSync restores from a checkpoint.

ability to dynamically change the number of threads available to force the use of only one
thread when a checkpoint is taken, and then recreate the original number of threads when
the checkpoint finishes. This way CheckSync doesn’t need to worry about threads.

CheckSync has two components that take care of restoring from a checkpoint: the
loader and the restorer. Both are C programs that live on the backup and are invoked by
the manager when a failure occurs. The manager starts by executing the loader, which then
takes care of the rest of the process.

The first thing that needs to happen is for the loader to figure out what areas of memory
are needed by the application being restored. It does this by reading in the core image file
and looking at the table containing the information about all the VMAs. It also parses the
proc filesystem to figure out its own VMAs as well.

It is precisely because these areas are likely to overlap that the restorer exists separately
from the loader. The restorer is compiled with position independence enabled, allowing
it to run no matter where in memory it gets located. Then, CRIU’s compel utility [2] is
used to turn the resulting binary file into a header file containing an array of the binary data
for the restorer. This file also contains information about the locations of crucial functions

27



within the restorer. This array is referred to as the “restorer blob”.

The loader takes the two lists of VMAs and the length of the restorer blob and computes
a region of memory that intersects with neither its own mappings nor the application’s and
maps the restorer blob to this location. Additionally, it allocates space at the end of the
restorer blob for a series of arguments that the restorer code will need. Most important in
this is the information about the application’s VMAs, as well as the loader’s own VMA .

Then, the loader forks off a child process and opens a pipe to communicate with it.
This child process is responsible for jumping into the restorer. It does this by putting the
address to the arguments on the stack and then jumping to the main function in the restorer.
At this point, the restorer is running as the child process. The restorer is responsible for

(1) Loader starts executing

Loader vvar | vdso | vsyscall

(2) Loader reads VMAs and finds place for restorer

<
o
«»
o]

Loader vvar vsyscall

(3) Loader maps restorer

i - _

(4) Restorer unmaps then mmaps

(5) Restorer fixes vvar/vdso

Figure 3-7: Memory layout on backup as restoration progresses

<
o
@»
o]

vsyscall

<
<
8
<
o
7
o

vsyscall

vsyscall

reconstructing the memory of the application. This is illustrated in fig. [3-7} It starts by
unmapping all of the loader’s mappings, as they are no longer necessary. Then, it looks at
the list of VMASs needed by the application, opens the memory image file, and maps them

28



to the proper locations in memory. It also allocates space for any copy-on-write mappings
not in the file, and finally concludes by remapping the virtual system call areas to their
expected locations as well.

At this point the restorer uses the pipe to inform the parent process (still the loader)
that it is done. The loader then finishes the restoration step by stopping the restorer and
using ptrace to restore the state of the registers to what they were on the primary. Then,
it detaches, at which point the restorer process has morphed entirely into the application
process as it was captured on the primary.

Finally, the loader exits and the application resumes execution.

3.4 Consistency

Submitted . > 3 7] | Failure | Failover
Modifications I Occurs I Completes
_______________________________________ R
Modifications on l l
e 1 1-2 1-3 14 | | | |13
Application | |
_______________________________________ b .
| |
Modifications in ) " 3 3 | 3 | 3
Checkpoint _ _ ! _ ! _
Time

Figure 3-8: Timeline Consistency in CheckSync when failure occurs

CheckSync presents clients with a timeline-consistent view of the state of the applica-
tion. We use the same definition of timeline consistency as is used in PNUTS[14]. This
means that when a failover occurs, clients may be presented with an stale data, as the re-
stored application will not reflect any changes that occurred between the last checkpoint
and the failure. The stale data will reflect a valid prefix of the pre-crash operations. This is
illustrated in Figure 3-8

This is analogous to the consistency model presented by many existing systems de-
signed to fulfill similar roles as CheckSync. While consensus protocols provide strong
consistency rather than the weaker model used by CheckSync, systems like Redis[6],
Memcached[24], and even VMWare’s newer approach to fault tolerance [7] all provide
weak consistency as well.

However, CheckSync does offer an alternative approach to checkpointing for applica-
tions that need strong consistency. Such applications do, however, need to know about and
work with CheckSync. For these applications, CheckSync provides a blocking function call
that allows them to start a synchronous checkpoint. If the application calls this whenever a
state modification is made, then CheckSync will be strongly consistent.

To better facilitate this, CheckSync makes an optimization to the synchronous check-
pointing process. Instead of capturing all of an application’s memory, it instead relies on

29



the application passing it a pointer to the data structure that needs to be made strongly con-
sistent. This shrinks the size of the checkpoint, reducing the amount of time the application
is blocked for. However, as that data structure cannot be modified while the synchronous
checkpoint is happening, modifications are made serial. Therefore, CheckSync loses the
benefits of multithreading for writing threads. Reading threads can still execute in parallel.

The restoration process is also changed in this case. Instead of following the restore pro-
cess, the application is just started directly. Then, a library function provided by CheckSync
reads the checkpoint file and correctly restores the data structure.

This strategy of capturing and restoring only necessary structures could be made trans-
parent. While not implemented currently, it would be possible for the internal checkpointer
to sweep through an application’s memory before checkpointing, and capture only the live
data structures.

3.5 Application Support

Feature External Internal Internal
Supported Supported Could

Support

Network I/0 Yes No Yes

File I/O Yes No Yes

Fork/Exec Yes No No

Devices No No No

XServer Apps No No No

Table 3.1: CheckSync’s Checkpointing Schemes and the Features they Support

Table lists the restrictions on the kind of applications that can be checkpointed
using CheckSync. Generally, any operation supported by CRIU could be supported by the
internal checkpointing method as well. The exception to this is fork/exec. As the internal
checkpointer is inside the application process, the child created by fork/exec would not
be in communication with the checkpointer. Therefore, the checkpointer would fail to
checkpoint it.

Supporting File 1/O for the internal checkpointer is possible. If the primary collected
open file descriptors and the paths to the files they represent in the core image, and the file
system on the backup was identical to the primary, then the loader could open all the files
before restoration finished. An identical file system could be created using rsync[33]], or by
running on a networked storage system like Azure, Hadoop, or the like.

Supporting Network I/O requires cooperation from the Linux Kernel. The ability to
mark a socket as TCP_REPAIR. The kernel then takes care of restoration of the socket on
the backup itself. By capturing and restoring the queue and state of the socket, CheckSync
could therefore ensure that the socket was reconstructed identically on the backup.

Supporting both devices and graphical applications that use XServer is currently not
feasible. Hardware device drivers and the XServer both store application specific state

30



inside them, and CheckSync does not have access to this data. For this reason, it cannot
replicate that state and therefore cannot support applications that rely on them.

31



32



Chapter 4

Implementation

Component \ Lines of Code
Checkpoint Runtime Changes < 100
Checkpoint Library Code 200
Checkpoint Loader 400
Checkpoint Restorer 300
Manager Code 500

Table 4.1: Lines of code for CheckSync’s components

Table lists the components of CheckSync and the lines of code used to implement
each of them. The code CheckSync uses to take checkpoints lives partially in a modified
version of the Go runtime, and partially in an external go library.

The code to perform the restore operation is divided into two components. First, the
loader, which parses the various files that make up a single checkpoint, reads the results
into memory, and then switches contexts to the restorer. Both it and the restorer are written
in C.

The restorer is a piece of C code compiled with position independent flags, and then
passed through the Compel utility. Compel takes care of formatting the resulting binary
object file as an array of bytes and includes useful pointers to specific locations in the
array. This is then included by the loader so that it can map the restorer into memory as
described in the previous chapter.

The manager is written entirely in Go, using the grpc and the proto format for rpcs.

33



34



Chapter 5

Evaluation

We conducted three kinds of experiments with CheckSync to answer the following ques-
tions:

1. Transparency (§5.2): how much work does it take to make an application work with
CheckSync?

2. Checkpoint Overhead for timeline (§5.3)) and strong (§5.4) consistency: how much
impact does the checkpointing phase have on application performance?

3. Failover (§5.5): how much downtime is experienced by an application when a failover
occurs?

The results of these experiments show that CheckSync does deliver on its goal of pro-
viding applications with minor changes to the application. The only changes needed were
small ones to handle reconnecting to the backup in case of failure. The performance of
CheckSync is also satisfactory, incurring only a 30 percent loss in throughput when check-
points are taken extremely frequently. This is an improvement over existing solutions which
result in a more than 80 percent loss at the same frequency. Finally, we found that when
failure does occur, CheckSync is able to recover in under a second, even when the check-
point file is more than two gigabytes.

These measurements confirm that CheckSync accomplishes its goal. It provides trans-
parent fault tolerance and high availability without a debilitating performance loss.

5.1 Experiment Setup

These evaluations were conducted in two conditions. First, locally on an 8-core desktop
machine running Linux. We refer to this as the “local” test setup. Second, remotely using
an Amazon Web Services’ virtual private cloud. The primary and backup were run on
identical, m5.xlarge EC2 instances. Linux was used there as well. We refer to this as the
“remote” test setup.

All evaluations except those testing CheckSync’s strong consistency offering were per-
formed using the CRIU checkpoint/restore method. This is because the internal check-
pointer currently doesn’t support network connections, which are needed for the applica-
tions we looked at.

35



All experiments were run 50 times and the measured values varied little between runs.
The only exceptions were the measurements on the remote setup, which were impacted by
natural variation due to network latency and varying load on AWS. Even in that situation,
values were quite consistent.

5.2 Applications Evaluated and Transparency

Table [5.1] shows that CheckSync can support a variety of applications with small changes
to the actual application code. We selected three different applications to test this, each
with unique characteristics, to evaluate the transparency provided by CheckSync. First,
the MapReduce Coordinator [17]. Second, a key/value store, and third an application for
computing the powers of large matrices. Table[5.1{shows the lines of code changed in these
applications so that they can use CheckSync.

Application | Lines of Code | CheckSync Changes | Raft Changes

MapReduce 200 0+5 200+

K-V Server 100 0 50
Matrix Multiplication 130 0 N/A

Table 5.1: Lines of code changed for different applications. CheckSync required little-to-no
changes, while making the conversion to Raft for the same applications required significant
restructuring of the code.

5.2.1 Coordinator

The coordinator benefits from having CheckSync as it is a single point of failure in the
MapReduce system. Providing fault tolerance for the coordinator therefore increases the
overall reliability of the system. It is also an interesting case study for CheckSync as
existing coordinators are written to be multithreaded. This makes it difficult to convert
them to work with replicated state machines. Demonstrating that CheckSync can support
the coordinator therefore sets it apart from those systems.

We used a MapReduce coordinator written for the first lab of 6.824[1]]. The coordinator
was run on the local setup and was configured to run a simple word counting job. After
confirming that the output of the word count was correct, it was run on top of CheckSync.
Even with a failure in the middle of the job the end result was still correct. A few lines
of code were changed to make sure that the workers tried reconnecting to the coordinator
when an RPC failed to go through. These changes are the +5 in table[5.1]

5.2.2 Key/Value Store

The second application evaluated was an in-memory key/value store in the style of Redis
[6] and Memcached [24]]. Such key/value stores are often used as caches in a larger system,

36



and benefit from having some sort of fault tolerance so that they never get too cold, even if
a failure occurs.

The server maintains an internal hash table of keys and values, and exposes a get and
put RPC for clients to use. Both gets and puts are executed in parallel, and bucket locks are
used to ensure that concurrent client requests are handled safely.

No changes were required for it to work with CheckSync; this was due to CRIU. We
expected to have to change client code similar to what was done for MapReduce; we
thought they would have to be configured to attempt to reconnection on failure. However,
CRIU’s checkpointing implementation reconstructs the TCP connection on the backup,
which meant that no client code had to be changed. We expect that for the internal check-
pointer, a few lines would need to be modified so that clients would behave correctly.

5.2.3 Matrix Exponentiation

Finally, we wrote an application that performs repeated matrix exponentiation of a large
matrix. This application also required no code changes to work with CheckSync. This
application runs a long, continuous computation with no communication of any sort, sim-
ilar to what a scientific computing application would do (§2.4).The characteristic of long,
continuous computation sets it apart from the other two applications, which perform work
only when requested.

The application benefits from using CheckSync because in the case of a failure, in-
stead of starting from scratch, CheckSync enables the application to resume from the last
checkpoint. This can save significant time and compute cycles. Also, this benefit of saving
computation is not what replicated state machines provide. Replicated state machines pro-
vide high availability by replicating the work multiple times, and need a log of operations
to do so. Applications like this one don’t fit that model. That CheckSync supports this
application with no changes demonstrates its versatility.

5.2.4 Using Raft

Verifying that CheckSync was able to support all three applications with only small
changes shows the value in using CheckSync. We also tested the degree of the changes
needed to make the coordinator and key/value store work with Raft. To do so, we used
etcd’s implementation of Raft[4], which has a good API for writing applications. Never-
theless, we found that both applications required non-trivial changes to work with it.

As noted earlier, the matrix exponentiation application doesn’t get any benefit from
using Raft. For this reason we felt it unfair to try and force it onto the consensus protocol.

For all applications, table [5.1] shows only the changes made to the server, and not the
additional code needed to start and run the Raft instances that back the store.

The Key/Value store required less restructuring than the coordinator. All traces of mul-
tithreading had to be removed, and the code for the put operation was modified to add
entries to the log rather than directly updating the hash table. A function was also added
to read committed entries from Raft and apply those commits to the hash table. The get
operation was unchanged.

37



func (¢ *Coordinator) handleCompleted() {

for {
job, ok := <-c.successJobs
if tok {
break
+

switch job.JobType {
case MapJob:
id := job.JobId

if _, exist := c.successJobSet[id]; l!exist {
c.successJobSet[id] = true
if len(c.successJobSet) == len(c.inputFiles) {
c.mx.Lock()
if c.reduceCreated {
break
}
for j := 0; j < c.nReduce; j++ {
filenames := createReduceFilenames(c.rawFiles, j)

c.availableJobs <- ReduceJob(filenames, c.nReduce)
}
c.reduceCreated = true
c.mx.Unlock()

}

}

case ReducelJob:

for _, fileName := range job.FileNames {
jobId := reduceJobId(job)
c.successJobSet [jobId] = true

}

if len(c.successJobSet) == len(c.rawFiles)*(c.nReduce+1) {
c.mx.Lock()
close(c.availableJobs)
close(c.successJobs)
c.isSuccess = true
c.mx.Unlock()

}

Figure 5-1: The main coordinator function in the original MapReduce implementation.

38



func (c *Coordinator) handleCommits() {
for commit := range c.commitC {
if commit == nil {
// signaled to load smapshot
snapshot, err := c.loadSnapshot()
if err != nil {
log.Panic(err)
}
if snapshot != nil {
if err := s.recoverFromSnapshot(snapshot.Data); err !'= nil {
log.Panic(err)

3

continue

newlyCompleted := make([]Job, 0)
newlyCreated := make([]Job, 0)
for _, data := range commit.data {
var job Job
if isNewJob(data) {
// This function puts the job on the queue of waiting jobs
handleCreated(job)
} else {
// This performs the same functionality
// the original handleCompleted
// But instead of immediately adding new jobs
// 1t proposes them
handleCompleted(job)

Figure 5-2: The modified coordinator function for Raft. Instead of relying on workers
to tell us a job is complete, the coordinator instead waits on commits from Raft before
marking them as complete. It also watches for new jobs having been created, putting them
on the queue of available jobs once they are.

39



In the initial implementation of the coordinator, workers request jobs and then inform
it when the jobs are completed. The coordinator answers request for new jobs in parallel,
waiting in a main loop and watching for when any of the assigned jobs are completed.

Making the coordinator work with Raft required a restructuring of the way that jobs are
stored and managed by the coordinator. Both the list of completed and outstanding jobs
need to be made fault tolerant for the coordinator to become fault tolerant. This meant that
any change to the jobs needed to be proposed to Raft, and no action could be taken on those
changes until Raft committed them. This led to the modified function shown in fig.[5-2] as
compared to the unmodified version shown in fig. [5-1}

This required modifying the other parts of the coordinator as well. As noted, handle-
Completed was changed to propose new jobs rather than immediately create them. Also,
all RPC handlers were made serial through the use of locks, and workers were forced to
block until their job was committed by Raft. The job system was also changed to rely on a
queue rather than a channel.

All of these changes combined required more than 200 lines of code to be changed, as
noted in table

5.3 Checkpointing

This section presents the experiments used to evaluate the overhead introduced by the
checkpoint operation. The experiments also evaluated the size of the checkpoints on disk.
They show that this overhead is within the bounds of the overhead introduced by similar
operations on existing systems. However, as the size of the checkpoint grows, the operation
does become expensive.

Keys \ Checkpoint Size on Disk (MB) \ Approximate Total Size of Keys

1000 8.16 0.07
10000 8.16 0.72
100000 27.08 7.20
1000000 289.19 72.00
10000000 2287.61 720.00

Table 5.2: The size on disk for different numbers of keys. As the key space grows, the disk
size does as well.

To evaluate the overhead introduced by CheckSync, we used different checkpoint sizes.
To accomplish this, we took the key/value store and populated it with various numbers of
keys before running any experiments on it. The number of keys we picked and the resulting
checkpoint sizes on disk are tabulated in table [5.2] Each key/value pair totalled 72 bytes.
The extra size of the checkpoints comes from extra space on the heap and stack, the space
taken up by the runtime, and statically linked libraries like libc.

We used a simple client that produced a constant stream of serial requests on a 90%-get-
10%-put workload. The client submits a single request, waits for it to complete, and then
submits the next request. This experiment allows us to evaluate the overhead introduced by
checkpointing: whenever a checkpoint is taken the server will not process any requests.

40



5.3.1 Checkpoint Performance

Table shows the time it takes for CheckSync to produce a checkpoint. This is the
amount of time the application is suspended for, which therefore has the most impact on
application performance.

The suspending and dumping columns correspond to the operations of the same time
described in chapter [3] The cleanup step occurs after dumping is complete, and measure
the work done to get the application to resume after everything has been written to disk. As
expected, as checkpoint size grows, the time spent in the dumping stage grows to dominate
the checkpoint time. In the future, this can be mitigated by taking incremental dumps
rather than a new dump each time and taking advantage of the internal checkpointer. This
is discussed in detail in chapter [6]

Not included in the table is the time spent sending the checkpoint to the backup. This
happens in parallel with the application, and therefore has minimal impact on the applica-
tion’s performance. This time is entirely dependent on the size of the checkpoints, and the
quality of the network. Taking incremental dumps will also help reduce this time.

Keys | Total | Suspending | Dumping | Cleanup

1000 15.11 2.12 12.57 0.27
10000 16.50 2.15 13.93 0.42
100000 24.80 2.14 22.24 0.31
1000000 | 441.87 84.25 356.90 0.73
10000000 | 2208.28 150.78 2051.07 6.42

Table 5.3: Time spent in different phases of the checkpoint process (in milliseconds). As
checkpoint size grows, the time spent dumping dominates the time spent checkpointing as
the disk becomes a bottleneck.

Figure [5-3] shows the number of requests completed over time for the key/value store
with 1000 keys and checkpointing every 100ms. As can be seen in the graph, there are
periods of time where no requests are processed. This represents time spent taking a check-
point, as expected given the measurements in table [5.3]

41



Request over time with CheckSync Enabled

14000 A

12000 A

10000 A

8000 -

6000

Requests completed

4000 A

2000 A

0 200 400 600 800 1000
Time

Figure 5-3: Requests over Time with 1000 keys and checkpointing every 100ms. The
duration of the pauses in completion line up with the values in table

To determine whether the overhead introduced by CheckSync is reasonable, we looked
at Redis, an industry-standard key/value store and measured how its performance is im-
pacted by its save operation, which also suspends the server and writes to disk.

We constructed a client nearly identical to that used to measure CheckSync’s impact,
with the only difference being that it contacted a Redis server rather than a CheckSync one.

We compared the overhead introduced in each case. Redis is faster than our key/value
store when save/checkpoint aren’t used. This remains the case when save/checkpoint are
turned on, however the relative amount of requests per second lost is much higher for
Redis, especially at higher intervals of saving. The percentage of requests lost is tabulated
in Table @ which shows that when Redis saves once per second, it loses 13% of the
performance without saving, while CheckSync loses only 2% in the same situation.

We also compared the key/value server with the Raft port of the same application. We
used a three-node Raft cluster running locally, which achieves 2000 requests per second.
This is slower than the throughput for CheckSync even when checkpoints are taken every
40 milliseconds for a single client. This is likely due to the extra replication factor Raft
uses, as well as the fact that every modification incurs a penalty due to that replication.
This differs from CheckSync as CheckSync’s saving is periodic rather than occurring on
every modification.

42



Interval CheckSync | Percent Lost by | Redis Req/s | Percent Lost by
(ms) Req/s CheckSync Redis

50 13378.36 29 10817.00 82

500 18508.00 2 46693.80 24

1000 18667.16 2 53495.80 13

1500 18788.92 1 54535.00 11

2000 18496.76 3 56111.20 8

None 18974.00 N/A 61174.00 N/A

Table 5.4: Comparing Redis’ save overhead with CheckSync checkpointing. The percent-
age loss of requests per second in Redis is higher than CheckSync, especially at shorter
intervals.

5.4 Strong Consistency

One advantage of Raft is that it provides strong consistency to applications. CheckSync’s
internal checkpointer also has this ability. Applications pass it the data structures that need
to be strongly consistent and then CheckSync captures only the memory used for that data
structure and replicates it.

We evaluated the cost of strong consistency with the key/value store. The server passes
the underlying map structure that supports the key/value store to CheckSync anytime a
client submits a Put operation. This required 10 lines of code to be changed in the server,
still less than what was needed for Raft. Table [5.5|shows the time spent encoding the hash
table as well as the resulting checkpoint size for these experiments.

Of particular note is the size of the checkpoints in this configuration. On a key/value
store with one million key, the size of the synchronous solution was 3.9 times smaller than
the periodic solution. This is because the periodic solution replicates the whole process
rather than just the hash table. This is good evidence as to the value of the internal check-
pointer: as noted earlier, if the internal checkpointer were improved to sweep the process’
memory and checkpoint only live data structures, it would clearly decrease the size of the
checkpoint.

Also, the encoding operation is almost 3 times faster than the dump operation in the
periodic solution. Given the size difference between the two checkpoints this makes sense.
Although, it does point to some room for optimization in the encoding step, as the dump
for the external checkpointer is comparatively faster than this option given their relative
checkpoint sizes.

We also measured the throughput of the key/value store with CheckSync’s strong con-
sistency option. We used the same 90% get workload to do so, again running on the local
setup. Compared to a key/value store using etcd’s Raft implementation and running on the
same number of keys, CheckSync came out ahead, clocking 2500 requests per second as
compared to 2000 from the Raft-backed store.

43



Keys | Checkpoint Size on Disk (Bytes) | Time Spent Encoding (ms)

1000 0.15 3.33
10000 0.85 591
100000 7.42 33.57
1000000 74.00 309.56
10000000 740.00 3463.14

Table 5.5: Checkpoint Size and Time Spent Encoding for Strong Consistency. Both en-
coding time and size are around a quarter of their values in the periodic checkpointing.
This points to the efficacy of checkpointing on the level of data structures rather than all of
memory.

Keys | Total | Restoring VMAs | Restoring Registers

1000 3.15 2.18 0.97
10000 5.87 4.95 0.92
100000 11.03 9.67 1.36
1000000 | 71.43 70.38 1.05
10000000 | 500.08 498.99 1.09

Table 5.6: Time Spent in Different Phases of the Restore Process (in Milliseconds)

5.5 Failover and Restoration

When the primary fails, there is a period of downtime present before the backup takes over.
This length of this period has an impact on application availability, so keeping it low is
important. In this section, we evaluate the downtime experienced by the key/value store
when using CheckSync, showing that even with 10 million keys, the time to recover is only
just over a second.

To do so, we ran CheckSync in both the local and remote setups. We used the local
setup exactly as described in §5.3] except that part of the way through the client’s run we
induced a failure on the primary and measured the time it took for the client to return to
normal throughput. After the backup detects 5 missing heartbeats, it triggers the failover
process. The results of this are shown in fig.

44



Throughput in the presence of failover

160000 -

140000 -

120000 -

100000 A

80000 ~

Requests completed

60000

40000 -

20000 +

0 - — == Failure Occurred

2000 4000 6000 8000 10000
Time (ms)

(=

Figure 5-4: Impact of failover on application throughput. The pause in request completion
matches with the timed results from table [5.6] demonstrating that downtime is reasonably
short at under 1 second.

The reason for doing this on the local setup was to isolate the time spent in different
parts of the restoration process for different checkpoint sizes. The breakdown is shown in
table [5.6] As expected, restoring the VMAs eventually grows to dominate the time spent
in restoration, as reading all that memory from disk becomes the bottleneck for the restore.
Even with 10 million keys, though, restoration time stayed under one second.

The remote setup follows the description from chapter 3] We deployed the primary
and backup in the same VPC on Amazon AWS, and assigned an elastic IP address to the
primary. Then, we setup a lambda function to swap the elastic IP to point to it instead.

First, it carries out the restoration process exactly as it does in the local setup. Then, just
before switching to the application completely, it triggers the lambda function to swap IPs
so that the clients don’t need to ask a clerk for the new location. Once the switch finishes,
the backup resumes the application and completes the failover.

We deployed this with the key/value server on the remote setup, and evaluated the time
spent in different phases of the process. The results are shown in table

It should be noted that while these results are good, Raft’s recovery time is faster than
CheckSync. This is because Raft only needs to run a single election to recover from a
failure, which doesn’t take much time.

45



Keys Total Detecting | Restoring | Restoring | Swapping
Failure VMASs Registers | Elastic IP
1000 652.91 618.22 3.01 0.87 30.81
10000 595.02 558.01 6.02 1.11 29.88
100000 | 648.29 602.92 11.07 3.10 31.20
1000000 | 717.61 598.78 87.76 3.58 27.49
10000000| 1132.09 | 570.18 528.63 3.07 30.21

Table 5.7: Time Spent in Different Phases of the Restore Process on Remote Deployment
(in Milliseconds). Detecting failure time dominates the time spent here due to latency
between primary and backup. However, even with a large checkpoint total time is just over
1 second.

5.6 Summary of Results

The experiments we conducted to evaluate CheckSync demonstrate four key results:

1.) CheckSync provides transparent fault tolerance. All three of the applications we
evaluated CheckSync with required less than 10 lines of code to be changed in order
to function with CheckSync. CheckSync successfully replicated and recovered from
failure for all three applications.

2.) The overhead for taking a checkpoint is not unreasonable. Compared to Redis’s save
operation, CheckSync’s checkpointing has a smaller impact on performance. This

impact grows more significant the larger memory grows.

3.) CheckSync can achieve both strong consistency and smaller checkpoint costs with
the internal checkpointer than the external one. This demonstrates the viability of
the internal checkpointer and points to potential future optimizations even for the

periodic checkpointing.

4.) CheckSync is highly available. The time spent recovering from failure is just over

one second even with ten million keys in storage.

46



Chapter 6

Extensions and Future Work

6.1 Decreasing Checkpoint Size

One of the main advantages of integrating CheckSync’s checkpointing code into the Go
runtime is the access to the information the runtime has about the running application.
For instance, the runtime knows about every structure in use by the application, which
would potentially enable CheckSync to capture and replicate only those structures from the
primary to the backup. Other potential uses of the runtime that we hope to investigate in
the future include making use of the garbage collector to replicate only live data.

CheckSync’s goal in using this extra information would generally be to reduce the size
of the state being checkpointed. This could significantly increase the uptime of the appli-
cation by reducing the amount of time that it needs to be frozen while CheckSync captures
and dumps its state.

6.2 Incremental Checkpointing

Outside of reducing the size of checkpoints on disk, another optimization to the check-
pointing step would be to use incremental checkpoints. It is unlikely that all of memory is
changed between checkpoints, and CheckSync could use this to its advantage. One option
would be to track memory changes (likely using the runtime) and only dump pages that
were changed. Another angle might be to keep the previous checkpoint in memory and
take a diff between it and the current one. By dumping only the diff, the amount of state
being replicated for each checkpoint would decrease.

6.3 Fast Restoration

Another potential use of the runtime integration would be to speed up the restoration pro-
cess. By making use of the fact that the runtime is identical on primary and backup, it may
be possible to further modify the bootstrap process used by Go in ways that reduce the
overhead of loading in the full checkpoint. For instance, the CheckSync runtime might be
able to setup a skeleton of the application without even looking at any files on disk, only

47



making use of the checkpoint files to fill in specific gaps in memory. This could improve
the delay experienced when a failure occurs.

6.4 Checkpoint Storage in Deployment

One other area for future investigation is improving the storage of checkpoints. As we
envision CheckSync being deployed in cloud computing environments, it is natural that the
files making up the checkpoint be stored in such a system as well. Doing so would eliminate
the need for actually replicating the checkpoint from the primary to the backup, and would
introduce a higher level of fault tolerance due to the guarantees provided by storage systems
like Amazon S3. This could improve both the performance and availability of CheckSync
in future deployments.

48



Chapter 7

Conclusion

CheckSync is a system designed to provide transparent fault tolerance for application de-
velopers. It can take a Go application and periodically checkpoint its state, replicate that
state, and resume from it in the case of failure, without any cooperation from the application
itself. CheckSync has two different checkpointing libraries, one using Go that demonstrates
the feasibility of runtime cooperation in taking checkpoints, and another that uses CRIU.
System configuration and maintenance is handled by managers running on the primary and
backup. CheckSync was evaluated in both a local and remote deployment, demonstrating
its viability as a method for achieving fault tolerance. In the future, we hope to make better
use of CheckSync’s integration with the runtime to reduce checkpoint overhead.

49



50



Bibliography

[1]
(2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

6.824: Distributed systems. https://pdos.csail.mit.edu/6.824/.
Compel. https://criu.org/Compel.

CRIU - Checkpoint/Restore in User Space. https://www.criu.org.
etcd. https://etcd.io/.

Golang. https://golang.org/.

Redis. https://redis.io/.

vsphere vmotion. https://www.vmware.com/products/vsphere/vmotion.
html.

Gautam Altekar and Ion Stoica. ODR: Output-Deterministic Replay for Multicore
Debugging. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Sys-
tems Principles, SOSP ’09, pages 193-206, New York, NY, USA, 2009. Association
for Computing Machinery.

Joel Bartlett, Jim Gray, and Bob Horst. Fault Tolerance in Tandem Computer Sys-
tems. In Algirdas Avizienis, Hermann Kopetz, and Jean-Claude Laprie, editors, The
Evolution of Fault-Tolerant Computing, pages 55-76, Vienna, 1987. Springer Vienna.

Claudio Basile, Zbigniew Kalbarczyk, and Ravishankar K Iyer. Active Replication of
Multithreaded Applications. IEEE Trans. Parallel Distrib. Syst., 17(5):448-465, may
2006.

Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and Martin Schulz.
Application-Level Checkpointing for Shared Memory Programs. In Proceedings of
the 11th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XI, pages 235-247, New York, NY, USA,
2004. Association for Computing Machinery.

Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan Demers, Johannes
Gehrke, and Walker White. Fast checkpoint recovery algorithms for frequently con-
sistent applications. In Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data, pages 265-276, 2011.

51


https://pdos.csail.mit.edu/6.824/
https://criu.org/Compel
https://www.criu.org
https://etcd.io/
https://golang.org/
https://redis.io/
https://www.vmware.com/products/vsphere/vmotion.html
https://www.vmware.com/products/vsphere/vmotion.html

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Conference on Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI’05, page 273-286, USA, 2005. USENIX Associa-
tion.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277-1288,
August 2008.

Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. Stable Deterministic
Multithreading through Schedule Memoization. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’ 10, pages 207—
221, USA, 2010. USENIX Association.

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. Remus: High Availability via Asynchronous Virtual Machine
Replication. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’08, pages 161-174, USA, 2008. USENIX Asso-
ciation.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107-113, January 2008.

Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang.
Rex: Replication at the Speed of Multi-Core. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys *14, New York, NY, USA, 2014. Associ-
ation for Computing Machinery.

Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee, Taesoo Kim, and Pavel
Emelyanov. Instant OS Updates via Userspace Checkpoint-and-Restart. In 20716
USENIX Annual Technical Conference (USENIX ATC 16), pages 605-619, Denver,
CO, jun 2016. USENIX Association.

Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst., 16(2):133—
169, may 1998.

P A Lee, T Anderson, J C Laprie, A Avizienis, and H Kopetz. Fault Tolerance:
Principles and Practice. Springer-Verlag, Berlin, Heidelberg, 2nd edition, 1990.

K Li, J F Naughton, and J S Plank. Real-Time, Concurrent Checkpoint for Parallel
Programs. In Proceedings of the Second ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, PPOPP *90, pages 79-88, New York, NY, USA,
1990. Association for Computing Machinery.

Jun-Lin Lin and Margaret H Dunham. A Survey of Distributed Database Checkpoint-
ing. Distributed and Parallel Databases, 5(3):289-319, 1997.

52



[24] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache at facebook.
In Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation, nsdi’ 13, page 385-398, USA, 2013. USENIX Association.

[25] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient Deter-
ministic Multithreading in Software. SIGPLAN Not., 44(3):97-108, mar 2009.

[26] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algo-
rithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’ 14, pages 305-320, USA, 2014. USENIX Association.

[27] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson. Low-
overhead asynchronous checkpointing in main-memory database systems. In Pro-
ceedings of the 2016 International Conference on Management of Data, SIGMOD
16, page 1539-1551, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[28] Santiago Rodriquez, Antonio Pérez, and Rafael Méndez. A new checkpoint mecha-
nism for real time operating systems. SIGOPS Oper. Syst. Rev., 31(4):55-62, October
1997.

[29] Daniel J Scales, Mike Nelson, and Ganesh Venkitachalam. The Design of a Practical
System for Fault-Tolerant Virtual Machines. SIGOPS Oper. Syst. Rev., 44(4):30-39,
dec 2010.

[30] Fred B Schneider. Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Comput. Surv., 22(4):299-319, dec 1990.

[31] Johny Srouji, Paul Schuster, Maury Bach, and Yulik Kuzmin. A transparent check-
point facility on NT. In 2nd USENIX Windows NT Symposium (2nd USENIX Windows
NT Symposium), Seattle, WA, August 1998. USENIX Association.

[32] X.Tang,J.Zhai, B. Yu, W. Chen, W. Zheng, and K. Li. An efficient in-memory check-
point method and its practice on fault-tolerant hpl. IEEE Transactions on Parallel and
Distributed Systems, 29(4):758-771, 2018.

[33] Andrew Tridgell, Paul Mackerras, et al. The rsync algorithm. 1996.

[34] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation - Volume 6, OSDI’04, page 7, USA,
2004. USENIX Association.

[35] Ruini Xue, Wenguang Chen, and Weimin Zheng. Cprfs: A user-level file system to
support consistent file states for checkpoint and restart. pages 114—123, 01 2008.

33



[36] Gengbin Zheng, Chao Huang, and Laxmikant V Kalé. Performance Evaluation of Au-
tomatic Checkpoint-Based Fault Tolerance for AMPI and Charm++. SIGOPS Oper.
Syst. Rev., 40(2):90-99, apr 2006.

[37] Gengbin Zheng, Lixia Shi, and L V Kale. FTC-Charm++: An in-Memory
Checkpoint-Based Fault Tolerant Runtime for Charm++ and MPI. In Proceedings
of the 2004 IEEE International Conference on Cluster Computing, CLUSTER ’04,
pages 93—-103, USA, 2004. IEEE Computer Society.

[38] Li Zhuang Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou. Paxos
Made Parallel.

54



	Contents
	List of Figures
	List of Tables
	Introduction
	Making Applications Fault Tolerant is Intrusive
	CheckSync: Transparent Fault Tolerance
	Thesis Goals and Contributions

	Background and Related Work
	Consensus Protocols
	Operation and Memory-Based Replication
	Multithreaded Fault Tolerance
	Checkpointing

	Design
	Overview
	Manager
	Failover

	Checkpoint/Restore
	Checkpointing
	Suspension
	Dump
	Restore

	Consistency
	Application Support

	Implementation
	Evaluation
	Experiment Setup
	Applications Evaluated and Transparency
	Coordinator
	Key/Value Store
	Matrix Exponentiation
	Using Raft

	Checkpointing
	Checkpoint Performance

	Strong Consistency
	Failover and Restoration
	Summary of Results

	Extensions and Future Work
	Decreasing Checkpoint Size
	Incremental Checkpointing
	Fast Restoration
	Checkpoint Storage in Deployment

	Conclusion
	Bibliography

