CheckSync: Using Runtime-Integrated Checkpoints to Achieve High Availability

Paper #215

Abstract

CheckSync provides applications with high availability via
runtime-integrated checkpointing. This allows CheckSync to
take checkpoints of a process running in a memory-managed
language (Go, for now), which can be resumed on another
machine after a failure. CheckSync uses the runtime to check-
point only the process’ live memory, doing without requiring
significant changes to applications.

CheckSync maintains the ease of use provided by virtual
machines for the applications it supports without requiring
that an entire virtual machine image be snapshotted. Because
CheckSync captures only the memory used by an applica-
tion, it produces checkpoints that are smaller (by an order
of magnitude) than virtual machine snapshots if the memory
footprint of the application is relatively small compared to
the state of the rest of the operating system. Additionally,
when running go-cache, a popular in-memory key/value store,
CheckSync reduces throughput by only 12% compared to
the 78% throughput loss when using go-cache’s snapshot
functionality, the 45% loss when using CRIU, and the 68%
loss when using virtual machine live migration.

1 Introduction

Having a general-purpose way of providing high availability is
important, especially to critical components of distributed sys-
tems like the MapReduce coordinator [22] or lock servers [14].
Adding component-specific solutions to these components
accomplishes the goal of making them highly available, but
adds extra complexity to simple pieces of code. Providing
an easy-to-use interface that works for many applications is
therefore better.

One commonly used solution is to capture the state of the
application in its entirety and replicate that state. This is ag-
nostic to the application running, which makes it a particularly
easy solution to fault tolerance to a system. Often, this is done
using virtual machines where the hypervisor takes a snapshot
of the running virtual machine that the system can then re-
sume from [13,20,41]. This includes data extraneous to the

application, such as state needed to reconstruct the virtual
machine and OS kernel.

This idea is extended in virtual machine live migration
[16,21,40]. At a high level, a primary hypervisor copies the
snapshots to a backup location, which then resumes and takes
over if the primary fails. This extends the fault tolerance
provided by snapshots with high availability, but still requires
that extra state be replicated.

This paper presents CheckSync, the first system to provide
high availability by consulting memory information main-
tained by the language runtime to construct checkpoints. This
maintains the ease of use of virtual machines for a restricted
class of applications, while providing an increase in perfor-
mance. CheckSync periodically checkpoints while an appli-
cation executes, dumping the essential state of the application
to network storage as a file. A backup machine monitors the
primary to detect failover.

After detecting a failure, the backup fetches the checkpoints
from network storage and loads them into memory to resume
application execution. To any clients interacting with the sys-
tem, this looks like a network error, and upon retrying they are
directed to the backup and can resume execution. CheckSync
relies on a Paxos-replicated configuration management ser-
vice to handle the forwarding and assignment of primary and
backup machines.

Checkpointing applications for high availability presents
three challenges. First, CheckSync must manage application
multithreading to ensure that it is in a state where it can
be checkpointed. Second, CheckSync must keep the size of
checkpoints small in order to be performant. The larger a
checkpoint is, the longer CheckSync has to spend writing to
disk, during which time application performance is paused.
Third, CheckSync must seamlessly resume from the check-
point after a failover; this means it has to construct a process
on the backup that is identical in memory, file descriptors, and
registers as the checkpointed process on the primary. Doing
so is tricky.

CheckSync is designed specifically to support applica-
tions written in memory-managed languages. The runtimes of

these languages track and update information about the state
of the running program, especially in the garbage collector.
CheckSync uses this runtime state to safely pause the execu-
tion of the application and to determine what pages need to
be dumped in each checkpoint.

CheckSync’s access to the runtime allows it to operate
without relying on the application to tell it what to replicate
and when. Instead, the application runs on the modified run-
time and CheckSync will determine where in memory the
application lives and what needs to be check pointed. It uses
the runtime and garbage collector to ensure that checkpoints
happen only at times that are safe for the application, such
as ensuring that no thread is holding any locks in the run-
time, which could otherwise lead to deadlock. This makes
CheckSync easy to use for application developers.

CheckSync only checkpoints memory that the runtime indi-
cates is live, not memory that is on the free list. Compared to
virtual machines, which have to snapshot all of the operating
system’s memory, CheckSync is able to use this technique to
produce smaller checkpoints. This improves performance, as
the smaller the checkpoint is, the quicker it is to take as less
disk writes are required.

Replication in CheckSync is asynchronous by default, as
the application is paused only while the checkpoint is taken,
and resumes before the checkpoint is persisted anywhere.
This means that clients may receive responses to requests that
aren’t included in the latest checkpoint. These will then be lost
after a failover. However, CheckSync provides a synchronous
operating mode as well, where the application’s execution is
resumed only after the checkpoint is successfully replicated.
Application developers must mark where in the code they
return a response to clients, and CheckSync will then take
a checkpoint at these locations. This allows CheckSync to
ensure that all state made visible to clients is included in the
latest checkpoint.

Runtime integration does restrict the kinds of applications
that CheckSync can support. Because CheckSync lives in
the same process as the application, it cannot replicate ones
that rely on multiple processes or any form of inter-process
communication, or any state that is stored in the kernel such
as TCP connection state. This means that applications that
use CheckSync have to reconnect after a failover rather than
having their connections carried over. Additionally, applica-
tions are responsible for handling duplicate request detection,
as that may arise when the clients reconnect after failover. Fi-
nally, while CheckSync replicates open file descriptors, its file
transferal is rudimentary and performance suffers if large files
are replicated. Applications that cannot handle the loss of data
that may occur after a failover in asynchronous CheckSync
are forced to use synchronous CheckSync.

We implemented CheckSync for Go. We evaluate its ease
of use with three sample Go applications: the go-cache
key/value store [33], a coordinator for a MapReduce-like
system, and a mathematical benchmark [7] that simulates

a long-running compute job. The evaluation demonstrates
that CheckSync is easy-to-use, requiring only 5 lines of code
to be changed for the MapReduce coordinator, and none for
the other applications.

We also evaluate CheckSync’s performance, showing that
it produces checkpoints significantly smaller than virtual ma-
chine snapshot, while reducing throughput by only 12% when
checkpointing ever 200ms. Go-cache’s application-specific
snapshots are smaller than CheckSync’s checkpoints, but
they reduce throughput by 78%. Remus [21] imposes a 68%
loss of throughput. CRIU [1], a process checkpointer, pro-
duces checkpoints 3x larger than CheckSync at a 45% loss.
CheckSync with synchronous replication has a significantly
higher overhead.

CheckSync’s main contribution is its exploitation of lan-
guage runtime state to reduce checkpoint cost. This makes
CheckSync an easy-to-use, high-performance solution to pro-
viding mission-critical applications with high availability. The
rest of this paper presents CheckSync’s design, its implemen-
tation, and an evaluation of its performance.

2 Related Work

This section reviews categories of related work roughly going
from more invasive approaches that require more work on the
part of application developers to less invasive approaches.

Replicated State Machines. Replicated state machines
[39] are widely used to provide high availability. Paxos [30]
and the family of algorithms it spawned are widely used today,
as is Raft [34]. Indeed, CheckSync relies on the presence of a
consensus protocol to handle configuration management, as
these protocols can handle network partitions.

However, adapting existing applications to use these ser-
vices can be difficult [12, 15], as not all applications can be
implemented as state machines without significant redesign.
For example, consider the MapReduce coordinator, which
tracks a set of tasks and distributes them to workers. To use
state machine replication, the coordinator would have to be
redesigned to store the set of tasks in a log, and to remove
them from the log in response to worker activity. This requires
a significant effort on the part of the application designer.

Additionally, state machine replication prevents applica-
tions from using mulithreading as they require deterministic
execution. This limits the performance of applications that use
these systems by removing the benefits of parallelism. While
attempts have been made to address this weakness [27,29],
these systems still require applications to be redesigned to fit
their protocols, making them difficult to use.

Another way to address the above problem is with deter-
ministic execution [3,9, 19]. When an application executes
deterministically, it can use replicated state machines [18]
even with multithreading. While deterministic execution is
an effective technique for enabling state machine replication

in multithreaded applications, it adds a sizable overhead to
application performance [11].

Checkpointing and Snapshotting. CheckSync is not the
first system to use checkpointing for fault tolerance. Many
database systems [4,36] also use checkpoints to recover from
crashes. Some of these systems, including members of the
SQL family [28,35], provide services to replicate these check-
points as well. Distributed storage systems like Amazon Au-
rora [43], Amazon RDB [4], Ceph [44], and NFS [37] can
also snapshot and replicate their persistent state to increase
availability.

All of these systems snapshot only the persistent data stored
in the system, such as the file system in Ceph or the database
in PostgreSQL. This makes them excellent solutions for appli-
cations that only care about making their data highly available.
However, CheckSync is also capable of replicating and restor-
ing the computation state of the application. This allows it to
support a class of applications that the above systems cannot.

Process-Level Checkpointing. Other systems can check-
point processes as well, such as DMTCP [2,5], CRIU [1] and
FTI[10]. DMTCP and CRIU are widely used today, for scien-
tific computing and container snapshotting respectively. These
frameworks are able to replicate state that CheckSync cannot,
such as open X11 windows and the full TCP stack. While
this allows them to support applications that CheckSync
can’t, they do not have access to the runtime integration that
CheckSync does. With the information it gets from the run-
time, as well as the smaller amount of state that needs to be
replicated, CheckSync producese checkpoints that are smaller
than those from these process checkpointing services (3x
smaller than CRIU, for example - table 5).

Checkpoint services have also been designed to support
serverless computing. The use case and motivation behind
these systems is different than for CheckSync. They focus
on reducing start-up costs for serverless functions [23,45],
rather than providing high availability. They are optimized for
the restore process, while CheckSync is more concerned with
keeping the checkpointing as fast as possible. Additionally,
many of them lack support for multithreaded applications as
serverless functions are generally single-threaded.

Virtual Machine Live Migration. Virtual machines have
long been seen as a potential technique for achieving trans-
parent fault tolerance using snapshots [20,41]. They have
also been used to provide high availability using live migra-
tion [16]. VMWare proposed one such method for doing so
using lockstep replication in VMWareFT [38]. That solution
has evolved over time into vSphere’s vMotion replication
option [40], an asynchronous technique for disaster recovery.
Open source hypervisors like Xen [8] provide similar tools
through the use of Remus [21]. These tools are extremely
easy to use, and almost any application can run on them.
However, this comes at the tradeoff of having larger check-
points, as virtual machines snapshots must include the state
of the entire operating system. CheckSync instead sacrifices

some general-purpose ease of use to reduce the amount of
state that is checkpointed, which reduces its overhead.

Containerization. One alternative to using a virtual ma-
chine is to run applications inside a container such as Docker
[32] or LXC [31], which also have snapshot capabilities.
While this provides the same ease of use as virtual machine
snapshotting with a lower overhead due to containers be-
ing more lightweight, there is no live migration solution for
container-based systems [42]. Like virtual machines, con-
tainers are easier to use than CheckSync and support more
applications, but have a higher overhead.

3 Design

CheckSync makes applications highly available by first check-
pointing the application, and then synchronizing the check-
point with a backup that can then restore from that checkpoint
in the face of failure. The design aims to minimize the cost of
checkpointing on application performance by exploiting state
in the language runtime to reduce the size of the checkpoints
that it takes.

CheckSync is designed for applications that live in-memory
and are critical to the operation of a larger system. Three ex-
amples of such applications are the MapReduce coordinator,
configuration managers, and long-running, compute applica-
tions. All three are mission critical. Without the coordinator,
workers cannot access the list of tasks, and no more work
can be done. Without a configuration manager, many services
are unable to function as they cannot learn about the other
components in the system. And, if long-running compute jobs
fail, they have to start from scratch which can slow down the
progress of the system as a whole. CheckSync can transpar-
ently support all of these applications. Because CheckSync
lives in the runtime, it cannot support all applications. This is
discussed further in section 3.7.

3.1 Overview

CheckSync’s design is composed of five components: a con-
figuration service, the two managers (section 3.2), the check-
pointer (section 3.3) and the restorer (section 3.4). The config-
uration service is responsible for determining who the current
primary is and directing clients to it, as well as managing
failover. The managers are responsible for initiating the check-
pointing and restoration processes and handling storage of
checkpoints. The checkpoint/restore code is responsible for
doing the work of checkpointing the application and restoring
it to a running state from a checkpoint. CheckSync has two
different operating modes, asynchronous and synchronous.
Asynchronous replicates checkpoints in the background, al-
lowing the application to resume as soon as the checkpoint
is written to the primary’s disk, while synchronous waits un-
til replication completes to resume operation, in addition to
checkpointing before replying to clients (section 3.5).

| Configuration Service
Primary Machine / \ Backup Machine
.4 Y

Primary Manager 1l Backup Manager
App T Checkpt App
""" ™| Checkpt i B el
CheckSync gﬁep CheckSync
Code Restorer [»| Code

Storage |

Figure 1: CheckSync Workflow. The primary takes a check-
point and sends the resulting file saved to storage. A config-
uration service detects when the primary fails and assigns
a backup to take over when it does. The backup reads and
restores from the stored checkpoint.

CheckSync relies on the language runtime to supply it
with some specific information and functionality in order to
simplify the checkpointing process and to deliver good per-
formance. First, it uses the scheduler’s knowledge of thread
state to checkpoint only at safe points. It uses the runtime’s
knowledge of the application’s memory to take incremental
checkpoints. Third, it uses the runtime’s knowledge of allo-
cated data structures to enable synchronous replication. The
implementation of CheckSync is integrated into the Go [24]
runtime, which maintains the required information. We be-
lieve that Java and C# also have runtimes that support these
features.

Figure 1, illustrates the high-level workflow for CheckSync.
The primary manager replicates the checkpoints so that they
are available to the backup. A configuration service monitors
the primary to detect failure, and assigns a backup up when
it detects one. The backup reads and restores from the stored
checkpoint.

3.2 Managers

CheckSync uses two managers to handle system operation,
one on the primary and one on the backup. The primary
manager has two roles: it starts the checkpoint process and
replicates the checkpoints to a storage system. The backup
manager is responsible for setting up and initiating the recov-
ery process.

Users configure the checkpoint process through the primary
manager by specifying paramaters like checkpoint frequency.
The primary manager then starts the checkpoint process at
this interval and stores the checkpoints produced. CheckSync
relies on the existence of a distributed storage system for this,
as that ensures that the checkpoints are themselves highly
available. The primary manager copies the checkpoints to

this storage system in the background. In addition to replicat-
ing the checkpoints, the primary manager also sends periodic
heartbeat messages to a configuration service that is responsi-
ble for determining when a failure has occurred.

As discussed in section 3.3.2, CheckSync takes incremental
checkpoints. The primary sends each incremental checkpoint
to storage and relies on the backup to do checkpoint recon-
struction, as discussed in section 3.4.

The backup manager is responsible for reassembling incre-
mental checkpoints and initiating the recover process. When
failure occurs, the backup manager fetches the checkpoints
from storage and reassembles them into a complete check-
point. It then triggers the restoration process, feeding it the
complete checkpoint.

3.3 Checkpointing

At a high level, the checkpoint process is divided into two

phases.

1 - Suspension. CheckSync takes care to suspend the run-
ning application in a state where no deadlocks can occur
during the rest of the checkpointing process.

2 - Dump. CheckSync captures the state of the application
and outputs it as a collection of files.

App Process CheckSync

(1) Start Checkpoint
(2) Stop the World

(3) Fork
Dumper .
(4) Dump memory image file
Application Memory
> Memory — Image
File
(5) Dump core image file
Registers ICore
> | VMAMap || TThAase
File

(6) Start the world

Figure 2: The checkpoint operation. CheckSync runs in the
background and periodically stops the world to checkpoint.
After it finishes dumping the images, it starts the world again
and allows the application to resume.

3.3.1 Suspension

Checkpointing occurs at an interval specified by the user when
starting the primary manager. At each interval, CheckSync
code running in the language runtime initiates the checkpoint-
ing process. In order to do so, CheckSync must be sure that
the checkpoint it will take represents a consistent point in time.
This requires that application execution is halted. Second, to
avoid deadlock, the application must be halted in a state such
that none of its threads are holding locks CheckSync will
need.

CheckSync begins suspension by brining all running
threads to a halt, aside from the one doing the checkpointing.
CheckSync can do this because of it’s integration with the
language runtime, which schedules the execution of all the
threads running in the application. CheckSync hooks into the
scheduler and freezes each thread. However, freezing threads
can have potentially harmful consequences. Consider the case
where a thread is in the middle of allocating some memory.
To do so, it must acquire a lock so that it can modify the al-
locator’s free list, which it will be holding while it is frozen.
However, CheckSync also needs that lock to safely access
the information about what is free in the heap to facilitate
incremental checkpointing. If CheckSync blindly froze the
thread, it would therefore result in a deadlock. For this reason,
CheckSync must run each task to a safe suspension point
before suspending.

The conditions for safe suspension are a subset of the con-
ditions needed for a garbage collector to suspend a running
thread. CheckSync therefore leverages its integration with
the language runtime to invoke the suspension step of the
garbage collector and bring the application to a halt. While
garbage collectors often have stricter conditions for suspend-
ing a thread than what CheckSync needs, such as needing
to be certain that a thread is not manipulating hidden point-
ers, our evaluation shows that waiting to suspend does not
significantly impact CheckSync’s performance.

Once all the threads running in the application are sus-
pended, all that is left are those associated with the runtime,
including the checkpointing code. Therefore, it is safe for
CheckSync to capture the memory of the application, as it
knows nothing will modify it any further.

3.3.2 Dump

CheckSync must include all the state needed to reconstruct the
application on the backup in the checkpoint. There are three
things that it needs to dump to do this. First, the memory of the
application. This contains all the state the application needs to
execute. Second, the values of all the registers. This tells the
resumed application where in memory to resume executing.
Third, any open file descriptors and the files they refer to. The
application may have open network sockets, epoll files, pipes,
or on-disk files, and the resumed application will crash when
it tries to read from them if they aren’t restored correctly.

Capturing the memory of the application is done by read-
ing all the virtual memory areas (VMAs) the process is using.
CheckSync learns about this information by asking the op-
erating system for it. On Linux, this is done using the proc
pseudo-filesystem. CheckSync gathers this information while
the application is suspended.

However, not all of an application’s memory space will be
modified between checkpoints. Were CheckSync to write out
all of the application’s memory each time, it would result in
significant data duplication, and create bloated checkpoint
sizes as they would grow linearly with the size of an applica-
tion in memory. For applications like caches or lock servers
this presents a performance bottleneck, which CheckSync
avoids by using incremental checkpoints.

CheckSync uses a two-step process to determine what
pages actually need to be dumped. First, it uses the oper-
ating system to find out which areas of memory have changed
since the last checkpoint. On Linux this is done by checking
the dirty bits in the pagemap file found under /proc. After
taking a checkpoint, CheckSync resets this information so
that the next read from it will contain only what has changed
since the last checkpoint.

However, the first step may include pages that contain only
dead objects in memory. CheckSync makes a second refine-
ment pass over the set of remaining pages to avoid dumping
such areas of memory.

Because the garbage collector and memory allocator in-
side the runtime already track information about areas of
dead/alive memory, CheckSync queries them to find the set
of pages that contain dead objects and then subtracts those
from the set of pages returned in the first step. This allows
CheckSync to construct a minimal set of pages that need to
be checkpointed in a way that isn’t replicable by techniques
like virtual machine live migration that don’t have access to
the language runtime.

In addition to the memory of the application, CheckSync
also needs to dump the critical state of the application such
as registers and open file descriptors. CheckSync forks a
child process to dump both this and the application’s memory,
the “dumper”. It does this so that the dumper can inspect its
parent to capture the parent’s register values. This is necessary
because thee parent cannot dump out its own register values,
as this would add a function call to the stack which would
invalidate the memory image captured earlier' . The dumper
dumps the contents of memory to the “memory image file”,
and the register values to the “core image file”.

The core image file is also used to store metadata about the
VMA:s. In order to correctly reconstruct the process’ mem-
ory state, CheckSync needs to capture the permissions for
each VMA, as well as making note of VMASs that the process
cannot read itself. These VMAs are primarily copy-on-write
mappings and the pages of memory used for virtual system

IThis is due to a peculiarity of Go, which does not allow inlining of
assembly without a dedicated function call

calls. Although the contents cannot be read and then written to
the memory image file, their locations and sizes are included
in the core image file as well so that the backup also has these
mappings. This is important as otherwise the language’s mem-
ory allocator could allocate those pages for the application
to use, which would cause a crash if the copy-on-write areas
need to be accessed later.

Also included in the checkpoint is information about open
pipes, sockets, and epoll files. These are all important as many
networking libraries use them, and CheckSync needs to be
able to support those libraries for client/server applications to
function. The contents of open pipes and sockets are included
in the checkpoints as well, in their own files.

The parent of the dumper simply waits for the dumper to
finish execution, at which point it starts the world again and
reallocates the original number of threads to the application.
This ensures that the application is never actually forced to
run in a serialized form, as it is forced onto a single thread
only while its execution is stopped.

3.4 Restoration

Loader
App.
—— (1) Read fi
VMAMap |~ (1) Read from
core.img
—1— (2) Find hole for
blob and mem
App. Restorer
Memory Blob —> —— (3) mmap blob
and memory
Restorer —+— (4) Fork & jump
to blob
—— (5) Unmap loader

—— (6) Remap application VMAs

(7) Signal done to loader process

(8) SetRegs on

Morph Complete restorer

| (9) Exit Loader
Application

!

Figure 3: The CheckSync Restoration Process.

Restoration is initiated by the backup manager when it
detects that the primary has failed. When this happens, the
backup manager begins by reconstructing the partial check-
points made available by the primary, creating a complete
checkpoint that it uses to do the restoration. The restoration
process is then undertaken by carefully recreating the appli-
cation’s memory space and then jumping into it to resume
execution.

3.4.1 Checkpoint Reconstruction

The first step in restoration is to build a complete checkpoint
from the incremental checkpoints in storage. The backup man-
ager fetches the incremental checkpoints when restoration is
triggered by and then merges them into a complete check-
point. Then, the backup starts restoring from that checkpoint.
In order to avoid having the backup merge an unbounded
number of incremental checkpoints, the configuration service
periodically triggers a service that merges the incremental
checkpoints in storage into a single checkpoint which can
then be used as the starting point for future merges.

Merging checkpoints is simple, which we illustrate by de-
scribing a merge of two checkpoints. Merging more than two
checkpoints is a repeated application of the following. We
refer to checkpoint 1 as the earlier of the two in chronological
order.

1) The backup manager reads the core image file for each
checkpoint, noting which pages of memory they touch

2) The backup manager takes all VMAs from checkpoint 2
and overwrites the pages associated with those locations
in checkpoint 1 with the data from checkpoint 2

3) The backup manager modifies the metadata in the core
image file of checkpoint 1 to reflect the updated register
values and mappings from checkpoint 2

After this, checkpoint 1 represents a complete merge of both

checkpoints, and checkpoint 2 can be deleted.

3.4.2 Load/Restore

Once CheckSync has a complete checkpoint it can start the
restoration process. At the end of restoration, CheckSync must
have constructed a process identical to the original application
in memory layout, register values and open file descriptors.
CheckSync does this by starting with a loader process that
gradually morphs into the application process. This morph
is necessary to ensure that all of memory has the correct per-
missions and behaves identically to how it did on the primary.
Doing so is tricky, as the application’s memory is compli-
cated and contains multiple mmap’d areas separated by holes.
CheckSync must recreate this layout exactly.

(1) Loader starts executing

(2) Loader reads core.img to
find place for restorer and memory

(3) Loader maps restorer and
application memory

(4) Restorer unmaps loader

(5) Restorer remaps application memory to
correct location and jumps to application

Figure 4: The progressive reconstruction of the application’s
memory space during the restoration process.

The loader begins by reading the core image file and look-
ing at the table containing the information about the applica-
tion’s VMA:G. It also parses the proc filesystem to determine
its own VMAs. There is no guarantee that there is no overlap
in these VMA, so the loader relies on a separate component,
the restorer, to handle possible conflicts. It is the loader’s job
to put all the contents of the memory image file into memory
somewhere, and then the restorer’s job to move it to the cor-
rect locations and start executing. The process for doing so is
illustrated in fig. 4.

For this to be possible, the restorer is a PIE-compiled binary
compiled using CRIU’s compel utility [6]. The result is a blob
of executable code of a fixed size. The loader reads the size
of the blob, finds a hole in memory where the blob will not
overlap with any of the application’s VMAs, and maps the
blob there. Then, the loader maps the contents of the memory
image file in a location that also doesn’t overlap with the
location of the application VMAs.

With this done, the loader process’ memory contains: the

restorer blob, the loader itself, and all the memory of the appli-
cation. At this point the loader opens the files that were open

on primary as well as creating sockets and internal pipes to
match those that were open when the application was created.
It uses the dup system call to move these into the proper file
descriptors before continuing.

CheckSync does not need to perform any specific recon-
struction of application threads. Instead, it relies on the run-
time scheduler to recognize the threads in memory and to
schedule them itself.

With all necessary information loaded into memory and
thee descriptors also allocated correctly, the loader allocates
a structure with all the metadata needed to restore the VMAS
to their proper locations, and executes a jump instruction into
the restorer with the address of this structure on the stack. The
restorer can then read this structure, using the data it contains
to map the application VMAS to their proper locations.

Once this is completed, the restorer executes a ptrace
command to overwrite its registers with the values stored
in the checkpoint, jumping execution into the application’s
virtual memory space and completing the restoration process.

3.5 Synchronous CheckSync

Failures may occur between checkpoint intervals, which could
cause clients to receive a success message for an operation on
the primary, only for the changes made by that operation to
disappear after failure because no checkpoint was taken that
included it. This is fine for an application like the MapReduce
coordinator, as it will result in some worker jobs being run
more than once. While this is a bit wasteful, it doesn’t impact
the correctness of the application.

However, this is not true for all applications. To support
them, CheckSync offers an option to do replication syn-
chronously. Synchronous CheckSync relies on application
developers to use a provided library function to mark places
where state is exposed to clients, and takes a checkpoint at
these points in the code. Synchronous CheckSync waits until
the checkpoint is safely stored before resuming the applica-
tion. This solution functions well for applications that encap-
sulates all their state in a single or small set of data structures,
such as lock servers, but performs worse than asynchronous
CheckSync due to the forced serialization is imposes on client
requests.

3.6 Failover

The configuration manager is responsible for monitoring
heartbeats from the primary, which it uses to detect failures.
In order to make failover as seamless as possible, the appli-
cation must be quickly resumed on a backup machine and
then clients must be directed to that backup machine so that
they can continue issuing their requests. Additionally, the ap-
plication and clients may need to handle duplicate detection
and retransmit earlier request to handle the consequences of a
failover.

The primary manager periodically sends heartbeat mes-
sages to the configuration service. When enough of these mes-
sages are missed, the configuration service initiates failover.
It selects a backup machine to use as the new primary, and
initiates the restoration process on the backup. Once this is
completed, the configuration service marks the backup as
the new primary and directs all future client requests to that
machine instead of the old primary.

Clients need to be prepared to deal with failover as well
as the application being checkpointed. TCP connections are
not carried over in a failure because they exist in the kernel,
outside of the space of the application. This means clients will
see a failure as a loss of connection. They must be prepared
to handle this by reconnecting to the configuration service,
while will eventually point them to the new primary.

A checkpoint followed by a failure may occur between a
request finishing and a response being sent. Upon resuming,
the application will try and send the response again, but be-
cause the TCP sockets are not copied over, this will fail. For
this reason, the client may retransmit that request, which has
already been processed, even with synchronous CheckSync.
CheckSync does not automatically handle this, instead relying
on the application to implement duplicate request detection if
necessary. We consider this an area of future work.

Failover can create another anomalous situation for asyn-
chronous CHeckSync. Consider a scenario where 2 update
requests execute in parallel. On the primary, the first request
finishes executing before the second, but reordering on the
backup caused the second request to execute first there. Any
client that read the value that was updated on the primary
will expect it to be what was set by the second request, but
on the backup the value is actually what was set by the
first request. There are applications unaffected by this, such
as the MapReduce coordinator which can safely use asyn-
chronous CheckSync, or caches which care little for reorder-
ing. Other applications can mitigate this by using synchronous
CheckSync.

Most clients already take care to automatically reconnect
on a loss of connection, but some may need to be modified to
include this. Additionally, application specific modifications
may need to be made to the client code to handle request
reordering and to support duplicate detection.

3.7 Application Support

Not all applications can use CheckSync. Because CheckSync
lives inside the language runtime, it has no knowledge of the
wider state of the system, or other processes running on the
same machine. This prevents applications that make use of
fork/exec from using CheckSync, as well as applications that
use inter-process communication.

As noted earlier, CheckSync cannot replicate the TCP state
stored in the kernel, and thus loses all active connections af-
ter a failover. This means that clients will have to reconnect

after a failure. If an application relies on TCP status to per-
form other tasks, it will either need to be redesigned or is not
compatible with CheckSync.

While CheckSync is able to replicate open files by tracking
the applications active file descriptors and copying the files
they refer to into storage alongside the checkpoint, it is not
designed to replicate large amounts of data stored in files and
performance will suffer significantly if large files are used.
CheckSync’s file replication is designed to support pipes,
sockets, and epoll files more than it is to handle actual on-disk
files.

We believe that many mission-critical applications do not
rely on any of the above, and have provided three examples
of such at the start of this section.

The features CheckSync doesn’t support are summarized
in table 1.

Feature Status
Multiple processes Not supported
IPC Not supported
Kernel state Not replicated

Large files Slow performance

Table 1: Limitations on apps that use CheckSync

4 Implementation

Clients

¥ Y
| Manager | N | Manager |
checkpoint Y
anp — Y Rebuilt | [,
mem | == Chkpt
u [k

Incremental | || _Loader |
csync core |files csync
ynep Checkpoints m2
Primary Storage Backup

Figure 5: CheckSync as Implemented

We implemented CheckSync inside the Go language run-
time. The checkpointing code and manager code were all
written in Go, while the loader and restorer were both written
in C. CheckSync relies on the Go runtime to monitor and
freeze application threads at safe points, for its information

about the liveness of areas of memory, and for its knowl-
edge of where in memory objects are located. We believe
that CheckSync could be implemented for any other language
whose runtime provides these features.

Figure 5 illustrates the full implementation and functional-
ity of CheckSync, which uses two additional machines. One
is used to store the checkpoint files for fault tolerance and
can be replaced with any fault tolerant storage service such
as Amazon S3, and the second is a configuration manager.
This machine is responsible for deciding which machine is
the current primary and directing clients to that machine only
and for initiating the failover process.

Component Lines of Code
Changes to Go runtime 150
CheckSync Library Code 600
Loader 400
Restorer 300
Manager Code 500
Configuration Manager 200

Table 2: Lines of code for CheckSync’s components

Table 2 lists the components of CheckSync and the lines
of code used to implement each of them. CheckSync’s mod-
ifications to the Go runtime are kept small by relying on a
Go library to do most of the work. The only changes needed
in the runtime itself were to expose necessary functions and
information to the CheckSync library.

The primary and backup managers communicate with the
configuration manager using gRPC [26].

5 Evaluation

CheckSync is intended to be nearly as transparent to appli-

cations as virtual machine checkpointing, but with higher

performance. This section evaluates both of these properties

by answering four questions:

* How much effort is required to adapt three existing applica-
tions to use CheckSync? (5.1);

* What is the impact of checkpointing on normal-case appli-
cation throughput? (5.2);

* How large are CheckSync’s checkpoints? (5.3);

* How long does it take to recover from a failure? (5.4)
Deployment. We deployed CheckSync on a Cloudlab de-

ployment using c220g2 machines. These machines each have

2 Intel 25-2660 CPUs with 10 cores each running at 2.60GHz,

160GB of RAM and 10Gb NICs. Two machines were used

as the primary and backup, while a third and fourth machines

were used as the configuration manager and storage service

respectively. All machines were co-located in the Cloudlab

Wisconsin data center.

Application | CheckSync | VM
MapReduce Coordinator 0 0
MapReduce Client 5 0
go-cache and client 0 0
gonum 0 0

Table 3: Lines of code changed to get three applications work-
ing on CheckSync and a virtual machine using Remus

5.1 Ease of use

To evaluate CheckSync’s ease of use, we selected three ex-
isting applications and ran them with CheckSync. For each
application, we measured the lines of code needed to get it to
operate on top of CheckSync, and also conducted a basic test
to ensure that the application operated as expected.

Application Selection. We selected three existing applica-
tions to use with CheckSync, each of which has different char-
acteristics. First, we took an implementation of the MapRe-
duce coordinator written previously. Second, the go-cache
key/value store. And third, a benchmark for the gonum pack-
age.

All three of these applications adhere to the restrictions
described in section 3.7. Also, all three of these applications
have different characteristics. The MapReduce coordinator
represents an ideal mission-critical application which requires
communication with multiple workers over the network and
makes extensive use of parallelism.

The go-cache key/value store also requires network con-
nections, but places stresses RAM more than the coordinator.
We evaluate the performance of this application in section 5.2.
Also, many mission-critical applications can be abstractly
considered key/value stores. Lock servers and caches, for ex-
ample, both requiring maintaining structures like a key/value
store in order to function.

We also evaluate a benchmark for the gonum package as
that places a much higher emphasis on compute resources than
the other applications. This benchmark is heavily parallel, and
stresses the CPU by performing many optimization operations
in a row.

Results. Table 3 shows the lines of code that had to
be changed to get each of the applications working on
CheckSync as compared to a virtual machine.

Both CheckSync and the virtual machine approach re-
quired no changes to the application code for gonum and
go-cache, and no changes to the go-cache client’. While
CheckSync didn’t require any changes to the coordinator
either, the worker code did have to be modified to retry con-
necting to the coordinator if it could not be reached due to an
in-progress failover.

This demonstrates that CheckSync is as easy-to-use as

2We used the YCSB client, which already tries to reconnect if a failure
happens

Remus virtual machine migration for the applications that it
supports.

5.2 Throughput Overhead

This section evaluates the decrease in go-cache through-
put due to CheckSync. We evaluate both asynchronous and
synchronous CheckSync. We compare this overhead to that
imposed by using virtual machines running on the Xen hyper-
visor and process checkpointing using CRIU [1]. The virtual
machines were allocated by CloudLab with 12 cores (the
max allowed by CloudLab) and 64GB of RAM. We restricted
go-cache to use only 12 cores in all our evaluations to ensure
fairness of the comparison.

Unfortunately, we were unable to get Remus working on
CloudLab due to problems with networking when installing
the Xen hypervisor on bare metal machines. However, we
were able to get a local version of Remus working to evaluate
the overhead it introduced on top of the Xen virtual machines.

Additionally, we compare the overhead introduced by
CheckSync against the overhead introduced by go-cache’s
snapshot system. An application specific snapshotting scheme
like go—cache’s writes only the data inside the hash table that
stores values to disk.

Benchmark. We use YCSB [17] to generate two work-
loads that we benchmark against. YCSB has been widely
used to evaluate the performance of production systems. Both
workloads run a million operations against 1000 keys. Work-
load A is 50% updates, 50% gets. Workoad B is 5% updates,
95% gets. Each entry is 1000 bytes long.

A single client was used to run the YCSB workload, which
used 20 worker threads to place parallel load on the server.
Any more than 20 worker threads resulted in no measurable
increase in throughput. We implemented a go-cache backend
for YCSB, and use that for both the virtual machine approach
and CheckSync.

Configuration. CheckSync, Remus and CRIU were all
configured to checkpoint/migrate every 200ms, the suggested
migration frequency for Remus. go-cache is snapshotted
every 200ms as well. Checkpoints are saved to disk, as are
snapshots. To account for this in our Remus evaluations, we
had Remus perform migration to the same machine.

The exception to this is for synchronous CheckSync, which
replicates its checkpoints to a machine in the same data center.
These machines share a 10Gb ethernet link and have a latency
of 150 us between them.

Results. Figure 6 shows the results of running go-cache
on its own, on top of CheckSync with asynchronous replica-
tion, CheckSync with synchronous replication, with CRIU
checkpointing it, and inside a virtual machine. Asynchronous
CheckSync outperforms the all the other configurations, with
an overhead of only 12%. We omit the Remus measurements
from this graph as they use estimates made on a different
setup.

10

Q40 Unmodified
2
Z B Snapshot
g 30 - CheckSync
S I CheckSync-Sync
g 20 4 CRIU
= Xen
£l
5 10
£
F .

0

Workload A

g 40 - Unmodified
é B Snapshot
g 30 - CheckSync
S I CheckSync-Sync
\‘; 20 - CRIU
= Xen
el
g 10 +
£
F .

0

Workload B

Figure 6: Throughput of go-cache in two different workloads
and five different configurations: go-cache, go-cache with
snapshotting enabled, go-cache on CheckSync, go-cache
on CheckSync-Sync, and go-cache on a Xen virtual ma-
chine.

The 12% overhead introduced by CheckSync is due to the
time an application spends suspended while checkpointing.
Most of this time (65%) is spent interacting with the file
system while CheckSync reads from /proc and writes the
checkpoint to disk. The remaining time is spent managing the
threads and doing the computations that facilitate incremental
checkpointing.

Table 4 shows the percentage of throughput lost when using
go-cache in different configurations. Each line in the table
shows the overhead introduced by a strategy, with a 10%
overhead representing a 10% loss in throughput compared
to the baseline. All go-cache deployments use go-cache on
a ¢220g machine as a baseline. Our local measurement of
Remus had an added overhead of 50-60% on top of a Xen

System | Workload A | Workload B
CheckSync 11.88% 12.61%
CheckSyncSync 99.83% 97.48%
GoCache w/ Snapshots 78.54% 78.48%
GoCache on Xen 42.41% 43.59%
Est. GoCache w/ Remus 68.32% 65.02%
GoCache w/ CRIU 45.58% 46.80%

Table 4: The drop in throughput compared to running an
application on its own for CheckSync and baselines

virtual machine, which matches the numbers from the Remus
paper. We combine the local overhead for each workload with
the overhead of Xen in CloudLab to produce the estimate
tabulated in the last row of table 4.

The results show that asynchronous CheckSync incurs a
relatively small overhead when compared to go-cache snap-
shotting, CRIU and Xen/Remus. The gap between CheckSync
and Remus is particularly large, confirming our hypothesis
that virtual machines add an unnecessary amount of overhead
to small applications like the one’s we tested.

Additionally, the numbers in table 4 show that CheckSync
with asynchronous replication outperforms CRIU, which has
a 45% throughput overhead. This is because CRIU’s check-
points are larger as it has to checkpoint more of the operating
system state that CheckSync.

Interestingly, as we show in table 5, go-cache snapshots
are smaller than CheckSync checkpoints, but still add more
overhead. We believe this to be for two reasons. First,
go-cache uses gob [25] to serialize the hash table. This
is more expensive than CheckSync, as it requires that Go
fully traverse the map, following all pointers it contains.
CheckSync, however, just dumps pages of memory directly
and doesn’t need to traverse anything. Additionally, snap-
shotting in go-cache allows all other threads to continue
executing, but does hold a lock on the hash table. This means
that all threads will eventually get stuck waiting for the lock,
and then will execute serially after the snapshot is dumped
until there is no more contention for the lock. CheckSync
avoids this by pausing all threads while the checkpoint is
taken, which means there is no extra lock contention after the
checkpoint finishes.

Synchronous CheckSync doesn’t perform nearly as well as
asynchronous CheckSync does. This is expected as it check-
points more frequently and forces a serialization of requests
that reduces performance due to a loss of parallelism. Both
of the other comparison points are also periodic, and snap-
shot far less often than synchronous CheckSync does. We
discuss potential optimizations to synchronous checkpointing
in section 6.

Our results show that CheckSync reduces throughput by
12%, which is better than the reduction experienced when
using CRIU, snapshots and Remus.

5.3 Checkpoint Size

We showed in the previous section that interacting with the
disk is the largest bottleneck to CheckSync’s performance.
For this reason, it is important that checkpoint size be as small
as possible in order to reduce the amount of data that has to
be written to disk.

We evaluate the size of CheckSync’s checkpoints on a run
of Workload A, during which the client issued 500,000 up-
dates on 1000-byte values. The results of this comparison are
tabulated in table 5. As CheckSync with synchronous replica-

11

tion uses the same checkpointing technique as asynchronous
CheckSync, the CheckSync data point captures the size of
both schemes.

Virtual machine snapshots are by far the largest of the four
comparison points, which makes sense as they include the
most state, even if they are taken incrementally. CheckSync’s
checkpoints are an order of magnitude smaller than the virtual
machine snapshots.

The reason for CheckSync’s small size is due to the ef-
fectiveness of incremental checkpointing. Each checkpoint
only contains the values that have been changed since the last
checkpoint, which is why the checkpoints are smaller than
the total size of the application.

CRIU checkpoints also use their own version of incremen-
tal checkpointing, which doesn’t have access to the runtime in-
formation CheckSync does. Additionally, CRIU checkpoints
more of the operating system. The combination of these two
factors explains why CRIU checkpoints are three times larger
than CheckSync’s.

go-cache snapshots contain only the data from the hash ta-
ble, and include none of the data from outside the application
heap that CheckSync has to capture. This explains why the
checkpoints are so small, which comes at the cost of a more
complex resume process, as the application has to start from
scratch unlike CheckSync. That CheckSync checkpoints are
close to the size of these application-specific snapshots is a
testament to incremental checkpointing, which we evaluate
next.

Impact of Incremental Checkpointing. Table 6 shows
the impact of CheckSync’s incremental checkpointing on
checkpoint size. We constructed a separate, update dominated
workload C to simulate the workloads imposed on services
like lock servers, where each request eventually results in an
update.

In all cases, the largest reduction in number of pages to
be dumped came from the first pass. This makes sense, as
the /proc pass has information about the process’ mem-
ory that the runtime doesn’t know about. The runtime only
tells CheckSync information about the memory on the heap.
This is most impactful when objects are frequently being
garbage collected, which occurs most frequently when items
are deleted from storage. This happens most frequently in
Workload C, which explains the increased impact of the sec-

System | Size (KB)
CheckSync 1229
Virtual Machine 889000
go-cache snapshots 738
CRIU incremental checkpoints 3794

Table 5: The average size in KB of the checkpoints/snapshots
written to disk by CheckSync and other systems over the
course of a run of Workload A

Workload Initial First Pass \ Second Pass
Workload A | 419058.06 375.89 307.23
Workload B | 425603.02 437.83 340.95
Workload C | 440274.68 1328.88 882.16

Table 6: The number of pages identified as having to be check-
pointed at each step of the incremental checkpointing process.
CheckSync only checkpoints the pages left after the second
pass.

ond pass in that case.

The results of our evaluation of checkpoint size show
that CheckSync’s incremental checkpointing successfully re-
duces checkpoint size by a significant amount. It is because
CheckSync is able to keep checkpoint size small that it is able
to achieve the throughput shown in section 5.2.

5.4 Deployment and Failover

In order to measure the time on CheckSync, we setup a ma-
chine to run go-cache and loaded it with 1000 keys, sending
heartbeats to the configuration service once every 100ms.
Then, we introduced a failure on the primary machine and
waited for the application to resume on the backup and read
back the 1000 keys to ensure the system operated correctly.
We measured the time to recover from failure, which took
829ms, most of which was spent reconstructing and reading
the checkpoints into memory. This means the applications are
offline for less than a second, making it highly available.

The time to recover is proportional to the size of the ap-
plication in memory, so applications that use more memory
take more time to recover. This is because the bottleneck
on recovery speed is mapping the contents of mem. img into
memory. The larger mem. img is, the longer this takes, and the
size of mem. img after merging all incremental checkpoints is
identical to the size of the application in memory.

6 Future Work

While CheckSync provides efficient, easy-to-use high avail-
ability for mission-critical applications, there are three direc-
tions for future work. First, improving the performance of
CheckSync and synchronous CheckSync. Second, improving
client/server support. Third, using CheckSync in serverless
computing.

Improved Performance. While CheckSync produces
small checkpoints, they are still larger than the snapshots pro-
duced by go-cache. This means there is more room for opti-
mization in the checkpointing process. One way CheckSync
could further reduce performance is by using the garbage
collector to do a trace of all the live objects in memory during
the second pass of incremental checkpointing. Currently, if a
page contains a live object, the whole page will be dumped.

12

However, this could be reduced by dumping only the live
object, which can be identified by reusing the pointer tracing
the garbage collector already does.

Additionally, synchronous checkpointing is currently ex-
tremely slow compared to asynchronous checkpointing.
While this is expected given the frequency at which it check-
points, there are potential optimizations to improve its perfor-
mance as well. For example, requests could be batched by the
server before returning to the client. This way CheckSync can
reduce the 1:1 ratio of state-modifying requests to checkpoint
operations. This could significantly increase synchronous
CheckSync’s performance.

Network Replication. One of CheckSync’s weaknesses
is that clients have to reconnect to a server after a failover
happens. This increases the time it takes to recover from
failure and interrupts a seamless client experience. Virtual
machine migration mitigates this by replicating the entire
TCP stack from within the kernel, maintaining all existing
connections. While CheckSync wouldn’t be able to do this
from within the runtime, it might be possible to extend the
manager to do this instead. This would increase CheckSync’s
usability for client/server applications.

Serverless Computing. CheckSync has applications out-
side of providing high availability. Serverless computing is a
growing field, and the complexity of the functions being run as
services is steadily growing. Checkpoints are already used to
enable hot-starts of serverless functions [45], but these check-
points do not support multithreaded code. CheckSync could
be used to support hot-start of more complicated serverless
functions, and also to provide fault-tolerance for serverless
functions that run for an extended period of time.

7 Conclusion

CheckSync is a system designed to provide high availability
to mission-critical applications. It takes an existing applica-
tion written in a memory-managed language and periodically
checkpoints and replicates the application’s state which it
can then resume from in the case of failure. CheckSync pro-
vides developers with the option of using asynchronous or
synchronous checkpointing based on the needs of their ap-
plication. Our evaluation demonstrates that CheckSync is as
easy-to-use as a virtual machine for the applications it sup-
ports, while providing higher performance.

CheckSync represents a new option for ensuring the avail-
ability of mission-critical applications, thereby increasing the
reliability of large-scale distributed systems.

References

[1] CRIU - a project to implement checkpoint/resetore
functionality for linux. https://github.com/
checkpoint-restore/criu.

https://github.com/checkpoint-restore/criu
https://github.com/checkpoint-restore/criu

(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

DMTCP: Distributed MultiThreaded CheckPointing.
original-date: 2014-09-21T17:21:59Z.

Gautam Altekar and Ion Stoica. ODR: output-
deterministic replay for multicore debugging. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Op-
erating systems principles, SOSP 09, pages 193-206.
Association for Computing Machinery.

Amazon. Creating a DB snapshot.

Jason Ansel, Kapil Arya, and Gene Cooperman.
DMTCP: Transparent checkpointing for cluster com-
putations and the desktop. In 2009 IEEE International
Symposium on Parallel Distributed Processing, pages
1-12. ISSN: 1530-2075.

CRIU Authors. Compel. https://criu.org/Compel.

The Gonum Authors. Gonum. https://github.com/
gonum/gonum.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP ’03, page 164—177,
New York, NY, USA, 2003. Association for Computing
Machinery.

C. Basile, Z. Kalbarczyk, and R.K. Iyer. Active repli-
cation of multithreaded applications. 17(5):448—465.
Conference Name: IEEE Transactions on Parallel and
Distributed Systems.

Leo Bautista-Gomez. FTI.

leobago/fti.

https://github.com/

Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis
Ceze. The deterministic execution hammer: How well
does it actually pound nails. In The 2nd Workshop on
Determinism and Correctness in Parallel Programming
(WODET’11).

William J. Bolosky, Dexter Bradshaw, Randolph B. Haa-
gens, Norbert P. Kusters, and Peng Li. Paxos repli-
cated state machines as the basis of a high-performance
data store. In Proceedings of the 8th USENIX confer-
ence on Networked systems design and implementation,
NSDI'11, pages 141-154. USENIX Association.

T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault tolerance. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, SOSP *95,
pages 1-11. Association for Computing Machinery.

Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th

13

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

symposium on Operating systems design and implemen-
tation, OSDI ’06, pages 335-350. USENIX Association.

Tushar D. Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: an engineering perspective.
In Proceedings of the twenty-sixth annual ACM sympo-
sium on Principles of distributed computing, PODC 07,
pages 398—407. Association for Computing Machinery.

Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian
Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implemen-
tation - Volume 2, NSDI’05, pages 273-286. USENIX
Association.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the st
ACM symposium on Cloud computing, SoOCC *10, pages
143-154. Association for Computing Machinery.

Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. P<span class="smallcaps smallercapi-
tal">axos made transparent. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP ’15, page 105-120, New York, NY, USA, 2015.
Association for Computing Machinery.

Heming Cui, Jingyue Wu, John Gallagher, Huayang
Guo, and Junfeng Yang. Efficient deterministic mul-
tithreading through schedule relaxation. In Proceedings
of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP *11, pages 337-351. Association
for Computing Machinery.

Lei Cui, Tianyu Wo, Bo Li, Jianxin Li, Bin Shi, and
Jinpeng Huai. Pars: A page-aware replication system for
efficiently storing virtual machine snapshots. SIGPLAN
Not., 50(7):215-228, mar 2015.

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: high availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI’08, pages 161-174. USENIX Association.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: sim-
plified data processing on large clusters. 51(1):107-113.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural

https://criu.org/Compel
https://github.com/gonum/gonum
https://github.com/gonum/gonum
https://github.com/leobago/fti
https://github.com/leobago/fti

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Support for Programming Languages and Operating
Systems, ASPLOS °20, pages 467-481. Association for
Computing Machinery.

Google. The Go programming language. https://
github.com/golang/go.

Google. gob. https://pkg.go.dev/encoding/gob.

gRPC. gRPC: A high performance, open source univer-
sal rpc framework. https://grpc.io.

Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: Replication at the
speed of multi-core. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems, EuroSys 14,
New York, NY, USA, 2014. Association for Computing
Machinery.

Ben Johnson, Michael Lynch, and Colin Arnott.
Litestream. https://litestream.io/.

Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
eve: Execute-verify replication for multi-core servers.
In Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’ 12,
page 237-250, USA, 2012. USENIX Association.

Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18-25, 2001.

Canonical Ltd. Container and virtualization tools.
https://linuxcontainers.org.

Dirk Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014(239):2, 2014.

Patrick Mylund Nielsen. go-cache. https://github.
com/patrickmn/go-cache.

Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In Proceedings
of the 2014 USENIX conference on USENIX Annual
Technical Conference, USENIX ATC’ 14, pages 305—
320. USENIX Association.

PostgreSQL. Logical replication in Post-
greSQL. https://www.postgresgl.org/docs/
10/logical-replication.html.

Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and
Alexander Thomson. Low-overhead asynchronous
checkpointing in main-memory database systems. In
Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 1539-1551.
Association for Computing Machinery.

14

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Russel Sandberg. The sun network file system: Design,
implementation and experience. In in Proceedings of
the Summer 1986 USENIX Technical Conference and
Exhibition. Citeseer.

Daniel J. Scales, Mike Nelson, and Ganesh Venkitacha-
lam. The design of a practical system for fault-tolerant
virtual machines. 44(4):30-39.

Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial. 22(4):299—
319.

Sreekanth Setty. VMWare vSphere 5.1 vMotion archi-
tecture, performance and best practices.

Sreekanth Setty. VMWare vSphere snapshots: Perfor-
mance and best practices.

Roberto Torre, Elena Urbano, Hani Salah, Giang T.
Nguyen, and Frank H. P. Fitzek. Towards a better un-
derstanding of live migration performance with docker
containers. In European Wireless 2019, 25th European
Wireless Conference, pages 1-6.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Mu-
rali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh
Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,
and Xiaofeng Bao. Amazon aurora: Design consid-
erations for high throughput cloud-native relational
databases. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD
17, page 1041-1052, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: a scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, OSDI ’06, pages 307-320. USENIX
Association.

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott
Shenker. Kappa: a programming framework for server-
less computing. In Proceedings of the 11th ACM Sympo-
sium on Cloud Computing, SoCC *20, pages 328-343.
Association for Computing Machinery.

https://github.com/golang/go
https://github.com/golang/go
https://pkg.go.dev/encoding/gob
https://grpc.io
https://litestream.io/
https://linuxcontainers.org
https://github.com/patrickmn/go-cache
https://github.com/patrickmn/go-cache
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html

	Introduction
	Related Work
	Design
	Overview
	Managers
	Checkpointing
	Suspension
	Dump

	Restoration
	Checkpoint Reconstruction
	Load/Restore

	Synchronous CheckSync
	Failover
	Application Support

	Implementation
	Evaluation
	Ease of use
	Throughput Overhead
	Checkpoint Size
	Deployment and Failover

	Future Work
	Conclusion

